메뉴 건너뛰기




Volumn 92, Issue 1, 2013, Pages 65-89

Beam search algorithms for multilabel learning

Author keywords

Beam search; Multilabel classification; Probabilistic models; Structured prediction

Indexed keywords

BEAM SEARCH; BEAM SEARCH ALGORITHMS; COMPUTATIONAL ISSUES; MULTI-LABEL CLASSIFICATIONS; PROBABILISTIC CLASSIFIERS; PROBABILISTIC MODELS; STATE-OF-THE-ART METHODS; STRUCTURED PREDICTION;

EID: 84879304113     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5371-6     Document Type: Article
Times cited : (91)

References (46)
  • 1
    • 33749033927 scopus 로고    scopus 로고
    • Kernels as features: On kernels, margins, and low-dimensional mappings
    • 10.1007/s10994-006-7550-1
    • Balcan, M. F., Blum, A., & Vempala, S. (2006). Kernels as features: on kernels, margins, and low-dimensional mappings. Machine Learning, 65(1), 79-94.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 79-94
    • Balcan, M.F.1    Blum, A.2    Vempala, S.3
  • 2
    • 70350723650 scopus 로고    scopus 로고
    • A theory of learning with similarity functions
    • 10.1007/s10994-008-5059-5
    • Balcan, M. F., Blum, A., & Srebro, N. (2008). A theory of learning with similarity functions. Machine Learning, 72(1-2), 89-112.
    • (2008) Machine Learning , vol.72 , Issue.1-2 , pp. 89-112
    • Balcan, M.F.1    Blum, A.2    Srebro, N.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • 1222.68184
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a gram matrix for improved kernel-based learning
    • 2249884 1222.68186
    • Drineas, P., & Mahoney, M. W. (2005). On the Nyström method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6, 2153-2175.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 13
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • 124952 0103.37001 10.1080/01621459.1961.10482090
    • Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56, 52-64.
    • (1961) Journal of the American Statistical Association , vol.56 , pp. 52-64
    • Dunn, O.J.1
  • 16
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • 10.1080/01621459.1937.10503522
    • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675-701.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 17
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • 10.1214/aoms/1177731944
    • Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11, 86-92.
    • (1940) The Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 20
  • 21
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • 0219.65008 10.1093/biomet/57.1.97
    • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.1
  • 24
    • 0002734223 scopus 로고    scopus 로고
    • The Markov chain Monte Carlo method: An approach to approximate counting and integration
    • PWS-Kent Boston
    • Jerrum, M., & Sinclair, A. (1996). The Markov chain Monte Carlo method: An approach to approximate counting and integration. In Approximation algorithms for NP-hard problems (pp. 482-520). Boston: PWS-Kent.
    • (1996) Approximation Algorithms for NP-hard Problems , pp. 482-520
    • Jerrum, M.1    Sinclair, A.2
  • 25
    • 4544259831 scopus 로고    scopus 로고
    • Logistic regression in rare events data
    • 10.1093/oxfordjournals.pan.a004868
    • King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137-163.
    • (2001) Political Analysis , vol.9 , Issue.2 , pp. 137-163
    • King, G.1    Zeng, L.2
  • 32
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applications to statistical mechanics
    • 1611693 0859.60067 10.1002/(SICI)1098-2418(199608/09)9:1/2<223: AID-RSA14>3.0.CO;2-O
    • Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures & Algorithms, 9(1-2), 223-252.
    • (1996) Random Structures & Algorithms , vol.9 , Issue.1-2 , pp. 223-252
    • Propp, J.G.1    Wilson, D.B.2
  • 34
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • 10.1007/s10994-011-5256-5
    • Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 37
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • 10.1162/089976698300017467
    • Schölkopf, B., Smola, A. J., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.