-
2
-
-
40949099766
-
Optimizing F-measure with support vector machines
-
2003
-
David R. Musicant, Vipin Kumar, and AyselOzgur.Optimizing F-measure with support vector machines. In FLAIRS-16, 2003, pages 356-360, 2003.
-
(2003)
FLAIRS-16
, pp. 356-360
-
-
Musicant, D.R.1
Kumar, V.2
Ozgur, A.3
-
3
-
-
31844446804
-
A support vector method for multivariate performance measures
-
Thorsten Joachims. A support vector method for multivariate performance measures. In ICML 2005, pages 377-384, 2005.
-
(2005)
ICML 2005
, pp. 377-384
-
-
Joachims, T.1
-
4
-
-
70349336577
-
Maximum expected F-measure training of logistic regression models
-
Martin Jansche. Maximum expected F-measure training of logistic regression models. In HLT/EMNLP 2005, pages 736-743, 2005.
-
(2005)
HLT/EMNLP 2005
, pp. 736-743
-
-
Jansche, M.1
-
6
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:1453-1484, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
7
-
-
84860500490
-
Training conditional random fields with multivariate evaluation measures
-
Jun Suzuki, Erik McDermott, and Hideki Isozaki. Training conditional random fields with multivariate evaluation measures. In ACL, pages 217-224, 2006.
-
(2006)
ACL
, pp. 217-224
-
-
Suzuki, J.1
McDermott, E.2
Isozaki, H.3
-
9
-
-
65449124511
-
A study on threshold selection for multi-label classification
-
National Taiwan University
-
Rong-En Fan and Chih-Jen Lin. A study on threshold selection for multi-label classification. Technical report, Department of Computer Science, National Taiwan University, 2007.
-
(2007)
Technical Report, Department of Computer Science
-
-
Fan, R.-E.1
Lin, C.-J.2
-
10
-
-
84862297825
-
Bayesian online learning for multi-label and multi-variate performance measures
-
Xinhua Zhang, Thore Graepel, and Ralf Herbrich. Bayesian online learning for multi-label and multi-variate performance measures. In AISTATS 2010, pages 956-963, 2010.
-
(2010)
AISTATS 2010
, pp. 956-963
-
-
Zhang, X.1
Graepel, T.2
Herbrich, R.3
-
12
-
-
66549104913
-
A maximum expected utility framework for binary sequence labeling
-
Martin Jansche. A maximum expected utility framework for binary sequence labeling. In ACL 2007, pages 736-743, 2007.
-
(2007)
ACL 2007
, pp. 736-743
-
-
Jansche, M.1
-
13
-
-
0029193061
-
Evaluating and optimizing autonomous text classification systems
-
David Lewis. Evaluating and optimizing autonomous text classification systems. In SIGIR 1995, pages 246-254, 1995.
-
(1995)
SIGIR 1995
, pp. 246-254
-
-
Lewis, D.1
-
16
-
-
85023205150
-
Matrix multiplication via arithmetic progressions
-
Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 3(9):251-280, 1990.
-
(1990)
Journal of Symbolic Computation
, vol.3
, Issue.9
, pp. 251-280
-
-
Coppersmith, D.1
Winograd, S.2
-
17
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML 2001, pages 282-289, 2001.
-
(2001)
ICML 2001
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
18
-
-
33745767102
-
Collective multi-label classification
-
Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In CIKM 2005, pages 195-200, 2005.
-
(2005)
CIKM 2005
, pp. 195-200
-
-
Ghamrawi, N.1
McCallum, A.2
-
19
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Krzysztof Dembczyński, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML 2010, pages 279-286, 2010.
-
(2010)
ICML 2010
, pp. 279-286
-
-
Dembczyński, K.1
Cheng, W.2
Hüllermeier, E.3
-
21
-
-
3042597440
-
Learning multi-label scene classification
-
Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
|