메뉴 건너뛰기




Volumn , Issue , 2011, Pages

An exact algorithm for F-measure maximization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85162517491     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (101)

References (21)
  • 2
    • 40949099766 scopus 로고    scopus 로고
    • Optimizing F-measure with support vector machines
    • 2003
    • David R. Musicant, Vipin Kumar, and AyselOzgur.Optimizing F-measure with support vector machines. In FLAIRS-16, 2003, pages 356-360, 2003.
    • (2003) FLAIRS-16 , pp. 356-360
    • Musicant, D.R.1    Kumar, V.2    Ozgur, A.3
  • 3
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • Thorsten Joachims. A support vector method for multivariate performance measures. In ICML 2005, pages 377-384, 2005.
    • (2005) ICML 2005 , pp. 377-384
    • Joachims, T.1
  • 4
    • 70349336577 scopus 로고    scopus 로고
    • Maximum expected F-measure training of logistic regression models
    • Martin Jansche. Maximum expected F-measure training of logistic regression models. In HLT/EMNLP 2005, pages 736-743, 2005.
    • (2005) HLT/EMNLP 2005 , pp. 736-743
    • Jansche, M.1
  • 6
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:1453-1484, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 7
    • 84860500490 scopus 로고    scopus 로고
    • Training conditional random fields with multivariate evaluation measures
    • Jun Suzuki, Erik McDermott, and Hideki Isozaki. Training conditional random fields with multivariate evaluation measures. In ACL, pages 217-224, 2006.
    • (2006) ACL , pp. 217-224
    • Suzuki, J.1    McDermott, E.2    Isozaki, H.3
  • 9
    • 65449124511 scopus 로고    scopus 로고
    • A study on threshold selection for multi-label classification
    • National Taiwan University
    • Rong-En Fan and Chih-Jen Lin. A study on threshold selection for multi-label classification. Technical report, Department of Computer Science, National Taiwan University, 2007.
    • (2007) Technical Report, Department of Computer Science
    • Fan, R.-E.1    Lin, C.-J.2
  • 10
    • 84862297825 scopus 로고    scopus 로고
    • Bayesian online learning for multi-label and multi-variate performance measures
    • Xinhua Zhang, Thore Graepel, and Ralf Herbrich. Bayesian online learning for multi-label and multi-variate performance measures. In AISTATS 2010, pages 956-963, 2010.
    • (2010) AISTATS 2010 , pp. 956-963
    • Zhang, X.1    Graepel, T.2    Herbrich, R.3
  • 12
    • 66549104913 scopus 로고    scopus 로고
    • A maximum expected utility framework for binary sequence labeling
    • Martin Jansche. A maximum expected utility framework for binary sequence labeling. In ACL 2007, pages 736-743, 2007.
    • (2007) ACL 2007 , pp. 736-743
    • Jansche, M.1
  • 13
    • 0029193061 scopus 로고
    • Evaluating and optimizing autonomous text classification systems
    • David Lewis. Evaluating and optimizing autonomous text classification systems. In SIGIR 1995, pages 246-254, 1995.
    • (1995) SIGIR 1995 , pp. 246-254
    • Lewis, D.1
  • 14
    • 70450255146 scopus 로고    scopus 로고
    • Learning nondeterministic classifiers
    • Juan Jose del Coz, Jorge Diez, and Antonio Bahamonde. Learning nondeterministic classifiers. J. Mach. Learn. Res., 10:2273-2293, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2273-2293
    • Del Coz, J.J.1    Diez, J.2    Bahamonde, A.3
  • 16
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 3(9):251-280, 1990.
    • (1990) Journal of Symbolic Computation , vol.3 , Issue.9 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 17
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML 2001, pages 282-289, 2001.
    • (2001) ICML 2001 , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 18
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In CIKM 2005, pages 195-200, 2005.
    • (2005) CIKM 2005 , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 19
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • Krzysztof Dembczyński, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML 2010, pages 279-286, 2010.
    • (2010) ICML 2010 , pp. 279-286
    • Dembczyński, K.1    Cheng, W.2    Hüllermeier, E.3
  • 21
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.