-
3
-
-
0003797958
-
-
San Diego, Calif, USA Academic Press MR1658022 ZBL1056.93542
-
Podlubny I., Fractional Differential Equations 1999 San Diego, Calif, USA Academic Press MR1658022 ZBL1056.93542
-
(1999)
Fractional Differential Equations
-
-
Podlubny, I.1
-
7
-
-
0004315248
-
-
New York, NY, USA Springer 10.1007/978-0-387-21746-8 MR1988873 ZBL1256.37039
-
West B. J., Bologna M., Grigolini P., Physics of Fractal Operators 2003 New York, NY, USA Springer 10.1007/978-0-387-21746-8 MR1988873 ZBL1256.37039
-
(2003)
Physics of Fractal Operators
-
-
West, B.J.1
Bologna, M.2
Grigolini, P.3
-
9
-
-
84861184833
-
-
New York, NY, USA Springer
-
Tenreiro Machado J. A., Luo A. C. J., Baleanu D., Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems 2011 New York, NY, USA Springer
-
(2011)
Nonlinear Dynamics of Complex Systems: Applications in Physical, Biological and Financial Systems
-
-
Tenreiro Machado, J.A.1
Luo, A.C.J.2
Baleanu, D.3
-
10
-
-
84881477855
-
The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations
-
10.1016/j.camwa.2013.01.019
-
Duan J. S., Chaolu T., Rach R., Lu L., The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations. Computers & Mathematics With Applications 2013 10.1016/j.camwa.2013.01.019
-
(2013)
Computers & Mathematics with Applications
-
-
Duan, J.S.1
Chaolu, T.2
Rach, R.3
Lu, L.4
-
11
-
-
84859427726
-
Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method
-
10.1016/j.amc.2012.01.063 MR2921332 ZBL1245.65087
-
Duan J. S., Chaolu T., Rach R., Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method. Applied Mathematics and Computation 2012 218 17 8370 8392 10.1016/j.amc.2012.01.063 MR2921332 ZBL1245.65087
-
(2012)
Applied Mathematics and Computation
, vol.218
, Issue.17
, pp. 8370-8392
-
-
Duan, J.S.1
Chaolu, T.2
Rach, R.3
-
12
-
-
58149263050
-
Analytical solution of a fractional diffusion equation by variational iteration method
-
10.1016/j.camwa.2008.09.045 MR2488620 ZBL1165.35398
-
Das S., Analytical solution of a fractional diffusion equation by variational iteration method. Computers & Mathematics with Applications 2009 57 3 483 487 10.1016/j.camwa.2008.09.045 MR2488620 ZBL1165.35398
-
(2009)
Computers & Mathematics with Applications
, vol.57
, Issue.3
, pp. 483-487
-
-
Das, S.1
-
13
-
-
34748865972
-
Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
-
10.1016/j.camwa.2006.12.037 MR2395628 ZBL1141.65398
-
Momani S., Odibat Z., Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Computers & Mathematics with Applications 2007 54 7-8 910 919 10.1016/j.camwa.2006.12.037 MR2395628 ZBL1141.65398
-
(2007)
Computers & Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 910-919
-
-
Momani, S.1
Odibat, Z.2
-
14
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
10.1016/j.physleta.2007.01.046 MR2308776 ZBL1203.65212
-
Momani S., Odibat Z., Homotopy perturbation method for nonlinear partial differential equations of fractional order. Physics Letters A 2007 365 5-6 345 350 10.1016/j.physleta.2007.01.046 MR2308776 ZBL1203.65212
-
(2007)
Physics Letters A
, vol.365
, Issue.5-6
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
15
-
-
65049084831
-
-
Boston, Mass, USA World Scientific Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus Models and Numerical Methods 2012 Boston, Mass, USA World Scientific Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
(2012)
Fractional Calculus Models and Numerical Methods
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
16
-
-
56049100715
-
Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation
-
10.1016/j.cnsns.2008.05.008 MR2474460 ZBL1221.65278
-
Jafari H., Seifi S., Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Communications in Nonlinear Science and Numerical Simulation 2009 14 5 2006 2012 10.1016/j.cnsns.2008.05.008 MR2474460 ZBL1221.65278
-
(2009)
Communications in Nonlinear Science and Numerical Simulation
, vol.14
, Issue.5
, pp. 2006-2012
-
-
Jafari, H.1
Seifi, S.2
-
17
-
-
77955895114
-
Heat-balance integral to fractional (half-time) heat diffusion sub-model
-
2-s2.0-77955895114 10.2298/TSCI1002291H
-
Hristov J., Heat-balance integral to fractional (half-time) heat diffusion sub-model. Thermal Science 2010 14 2 291 316 2-s2.0-77955895114 10.2298/TSCI1002291H
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 291-316
-
-
Hristov, J.1
-
18
-
-
84868622059
-
Integral-balance solution to the stokes' first problem of a viscoelastic generalized second grade fluid
-
Hristov J., Integral-balance solution to the stokes' first problem of a viscoelastic generalized second grade fluid. Thermal Science 2012 16 2 395 410
-
(2012)
Thermal Science
, vol.16
, Issue.2
, pp. 395-410
-
-
Hristov, J.1
-
19
-
-
84870906105
-
Transient flow of a generalized second grade fluid due to a constant surface shear stress: An approximate integral-balance solution
-
Hristov J., Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution. International Review of Chemical Engineering 2011 3 6 802 809
-
(2011)
International Review of Chemical Engineering
, vol.3
, Issue.6
, pp. 802-809
-
-
Hristov, J.1
-
20
-
-
77953478991
-
Fractional variational iteration method and its application
-
10.1016/j.physleta.2010.04.034 MR2640023 ZBL1237.34007
-
Wu G. C., Lee E. W. M., Fractional variational iteration method and its application. Physics Letters A 2010 374 25 2506 2509 10.1016/j.physleta.2010.04. 034 MR2640023 ZBL1237.34007
-
(2010)
Physics Letters A
, vol.374
, Issue.25
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
-
21
-
-
80052263783
-
Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science
-
10.1016/j.camwa.2011.07.014 MR2831688 ZBL1231.35288
-
Khan Y., Faraz N., Yildirim A., Wu Q., Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science. Computers & Mathematics with Applications 2011 62 5 2273 2278 10.1016/j.camwa.2011.07.014 MR2831688 ZBL1231.35288
-
(2011)
Computers & Mathematics with Applications
, vol.62
, Issue.5
, pp. 2273-2278
-
-
Khan, Y.1
Faraz, N.2
Yildirim, A.3
Wu, Q.4
-
22
-
-
79953735813
-
A fractional variational iteration method for solving fractional nonlinear differential equations
-
10.1016/j.camwa.2010.09.010 MR2785581 ZBL1219.65085
-
Wu G. C., A fractional variational iteration method for solving fractional nonlinear differential equations. Computers & Mathematics with Applications 2011 61 8 2186 2190 10.1016/j.camwa.2010.09.010 MR2785581 ZBL1219.65085
-
(2011)
Computers & Mathematics with Applications
, vol.61
, Issue.8
, pp. 2186-2190
-
-
Wu, G.C.1
-
23
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
10.1016/j.physleta.2011.01.029 MR2765013 ZBL1242.35217
-
Zhang S., Zhang H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs. Physics Letters A 2011 375 7 1069 1073 10.1016/j.physleta.2011.01.029 MR2765013 ZBL1242.35217
-
(2011)
Physics Letters A
, vol.375
, Issue.7
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.-Q.2
-
24
-
-
84874533666
-
Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations
-
587179 10.1155/2013/587179
-
Jafari H., Tajadodi H., Kadkhoda N., Baleanu D., Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations. Abstract and Applied Analysis 2013 2013 5 587179 10.1155/2013/587179
-
(2013)
Abstract and Applied Analysis
, vol.2013
, pp. 5
-
-
Jafari, H.1
Tajadodi, H.2
Kadkhoda, N.3
Baleanu, D.4
-
25
-
-
79251611305
-
A generalized expfunction method for fractional Riccati differential equations
-
Zhang S., Zong Q. A., Liu D., Gao Q., A generalized expfunction method for fractional Riccati differential equations. Communications in Fractional Calculus 2010 1 48 52
-
(2010)
Communications in Fractional Calculus
, vol.1
, pp. 48-52
-
-
Zhang, S.1
Zong, Q.A.2
Liu, D.3
Gao, Q.4
-
27
-
-
84555221318
-
Local fractional integral transforms
-
Yang X. J., Local fractional integral transforms. Progress in Nonlinear Science 2011 4 1 225
-
(2011)
Progress in Nonlinear Science
, vol.4
, pp. 1-225
-
-
Yang, X.J.1
-
29
-
-
84877248834
-
A Cauchy problem for some local fractional abstract differential equation with fractal conditions
-
Zhong W. P., Yang X. J., Gao F., A Cauchy problem for some local fractional abstract differential equation with fractal conditions. Journal of Applied Functional Analysis 2013 8 1 92 99
-
(2013)
Journal of Applied Functional Analysis
, vol.8
, Issue.1
, pp. 92-99
-
-
Zhong, W.P.1
Yang, X.J.2
Gao, F.3
-
30
-
-
84879315907
-
Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator
-
10.1186/1687-1847-2013-97 MR3049970
-
Su W. H., Yang X. J., Jafari H., Baleanu D., Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Advances in Difference Equations 2013 2013 1 97 107 10.1186/1687-1847-2013-97 MR3049970
-
(2013)
Advances in Difference Equations
, vol.2013
, Issue.1
, pp. 97-107
-
-
Su, W.H.1
Yang, X.J.2
Jafari, H.3
Baleanu, D.4
-
31
-
-
84874182595
-
One-phase problems for discontinuous heat transfer in fractal media
-
358473 10.1155/2013/358473
-
Hu M. S., Baleanu D., Yang X. J., One-phase problems for discontinuous heat transfer in fractal media. Mathematical Problems in Engineering 2013 2013 3 358473 10.1155/2013/358473
-
(2013)
Mathematical Problems in Engineering
, vol.2013
, pp. 3
-
-
Hu, M.S.1
Baleanu, D.2
Yang, X.J.3
-
32
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
10.1103/PhysRevLett.80.214 MR1604435 ZBL0945.82005
-
Kolwankar K. M., Gangal A. D., Local fractional Fokker-Planck equation. Physical Review Letters 1998 80 2 214 217 10.1103/PhysRevLett.80.214 MR1604435 ZBL0945.82005
-
(1998)
Physical Review Letters
, vol.80
, Issue.2
, pp. 214-217
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
33
-
-
77049111800
-
Diffusion problems in fractal media defined on Cantor sets
-
2-s2.0-77049111800 10.1002/zamm.200900376
-
Carpinteri A., Sapora A., Diffusion problems in fractal media defined on Cantor sets. ZAMM Journal of Applied Mathematics and Mechanics 2010 90 3 203 210 2-s2.0-77049111800 10.1002/zamm.200900376
-
(2010)
ZAMM Journal of Applied Mathematics and Mechanics
, vol.90
, Issue.3
, pp. 203-210
-
-
Carpinteri, A.1
Sapora, A.2
-
34
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
2-s2.0-0036028181 10.1016/S0960-0779(00)00238-1
-
Carpinteri A., Cornetti P., A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals 2002 13 1 85 94 2-s2.0-0036028181 10.1016/S0960-0779(00)00238-1
-
(2002)
Chaos, Solitons and Fractals
, vol.13
, Issue.1
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
35
-
-
0742324870
-
The elastic problem for fractal media: Basic theory and finite element formulation
-
2-s2.0-0742324870 10.1016/j.compstruc.2003.10.014
-
Carpinteri A., Chiaia B., Cornetti P., The elastic problem for fractal media: basic theory and finite element formulation. Computers and Structures 2004 82 6 499 508 2-s2.0-0742324870 10.1016/j.compstruc.2003.10.014
-
(2004)
Computers and Structures
, vol.82
, Issue.6
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
36
-
-
0036600978
-
On calculus of local fractional derivatives
-
10.1016/S0022-247X(02)00048-3 MR1911751 ZBL1005.26002
-
Babakhani A., Daftardar-Gejji V., On calculus of local fractional derivatives. Journal of Mathematical Analysis and Applications 2002 270 1 66 79 10.1016/S0022-247X(02)00048-3 MR1911751 ZBL1005.26002
-
(2002)
Journal of Mathematical Analysis and Applications
, vol.270
, Issue.1
, pp. 66-79
-
-
Babakhani, A.1
Daftardar-Gejji, V.2
-
37
-
-
0035891478
-
About non-differentiable functions
-
10.1006/jmaa.2001.7656 MR1866075 ZBL0995.26006
-
Ben Adda F., Cresson J., About non-differentiable functions. Journal of Mathematical Analysis and Applications 2001 263 2 721 737 10.1006/jmaa.2001.7656 MR1866075 ZBL0995.26006
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.263
, Issue.2
, pp. 721-737
-
-
Ben Adda, F.1
Cresson, J.2
-
38
-
-
70350325151
-
On the local fractional derivative
-
10.1016/j.jmaa.2009.08.014 MR2557664 ZBL1196.26011
-
Chen Y., Yan Y., Zhang K., On the local fractional derivative. Journal of Mathematical Analysis and Applications 2010 362 1 17 33 10.1016/j.jmaa.2009.08. 014 MR2557664 ZBL1196.26011
-
(2010)
Journal of Mathematical Analysis and Applications
, vol.362
, Issue.1
, pp. 17-33
-
-
Chen, Y.1
Yan, Y.2
Zhang, K.3
-
39
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
2-s2.0-27744450698 10.1016/j.chaos.2005.08.199
-
Chen W., Time-space fabric underlying anomalous diffusion. Chaos, Solitons and Fractals 2006 28 4 923 925 2-s2.0-27744450698 10.1016/j.chaos.2005. 08.199
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.4
, pp. 923-925
-
-
Chen, W.1
-
40
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
10.1016/j.camwa.2009.08.020 MR2595948 ZBL1189.35355
-
Chen W., Sun H., Zhang X., Korošak D., Anomalous diffusion modeling by fractal and fractional derivatives. Computers & Mathematics with Applications 2010 59 5 1754 1758 10.1016/j.camwa.2009.08.020 MR2595948 ZBL1189.35355
-
(2010)
Computers & Mathematics with Applications
, vol.59
, Issue.5
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korošak, D.4
-
42
-
-
15744373583
-
Fractal differential equations and fractal-time dynamical systems
-
2-s2.0-15744373583
-
Parvate A., Gangal A. D., Fractal differential equations and fractal-time dynamical systems. Pramana 2005 64 3 389 409 2-s2.0-15744373583
-
(2005)
Pramana
, vol.64
, Issue.3
, pp. 389-409
-
-
Parvate, A.1
Gangal, A.D.2
-
43
-
-
65449159066
-
Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions
-
10.1016/j.chaos.2007.09.028 MR2526363 ZBL1197.60039
-
Jumarie G., Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions. Chaos, Solitons and Fractals 2009 40 3 1428 1448 10.1016/j.chaos.2007.09.028 MR2526363 ZBL1197.60039
-
(2009)
Chaos, Solitons and Fractals
, vol.40
, Issue.3
, pp. 1428-1448
-
-
Jumarie, G.1
-
44
-
-
70349212072
-
Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
-
10.1016/j.aml.2009.05.011 MR2569059 ZBL1181.44001
-
Jumarie G., Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Applied Mathematics Letters 2009 22 11 1659 1664 10.1016/j.aml.2009.05.011 MR2569059 ZBL1181.44001
-
(2009)
Applied Mathematics Letters
, vol.22
, Issue.11
, pp. 1659-1664
-
-
Jumarie, G.1
-
45
-
-
84879324154
-
Fractal heat conduction problem solved by local fractional variation iteration method
-
Yang X. J., Baleanu D., Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science 2013 17 2 625 628
-
(2013)
Thermal Science
, vol.17
, Issue.2
, pp. 625-628
-
-
Yang, X.J.1
Baleanu, D.2
-
46
-
-
84879310679
-
Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method
-
10.1186/1687-1812-2013-89 MR3053815
-
Su W. H., Baleanu D., Yang X.-J., Jafari H., Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory and Applications 2013 2013 1 89 102 10.1186/1687-1812-2013-89 MR3053815
-
(2013)
Fixed Point Theory and Applications
, vol.2013
, Issue.1
, pp. 89-102
-
-
Su, W.H.1
Baleanu, D.2
Yang, X.-J.3
Jafari, H.4
-
47
-
-
84872148874
-
Local fractional Fourier series with application to wave equation in fractal vibrating string
-
567401 MR3004869 ZBL1257.35193 10.1155/2012/567401
-
Hu M. S., Agarwal R. P., Yang X.-J., Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstract and Applied Analysis 2012 2012 15 567401 MR3004869 ZBL1257.35193 10.1155/2012/567401
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 15
-
-
Hu, M.S.1
Agarwal, R.P.2
Yang, X.-J.3
-
49
-
-
84878016367
-
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives
-
Yang X. J., Srivastava H. M., He J. H., Baleanu D., Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Physics Letters A 2013 377 28-30 1696 1700
-
(2013)
Physics Letters A
, vol.377
, Issue.28-30
, pp. 1696-1700
-
-
Yang, X.J.1
Srivastava, H.M.2
He, J.H.3
Baleanu, D.4
-
51
-
-
84857467321
-
Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral
-
2-s2.0-84857467321 10.4028/www.scientific.net/AMR.461.306
-
Zhong W., Gao F., Shen X., Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Advanced Materials Research 2012 461 306 310 2-s2.0-84857467321 10.4028/www.scientific.net/AMR.461.306
-
(2012)
Advanced Materials Research
, vol.461
, pp. 306-310
-
-
Zhong, W.1
Gao, F.2
Shen, X.3
|