-
1
-
-
0033556334
-
Practical implementation of the fractional flow approach to multi-phase flow simulation
-
P. Binning, and M.A. Celia Practical implementation of the fractional flow approach to multi-phase flow simulation Advan. Watr. Resour. 22 1999 461 478
-
(1999)
Advan. Watr. Resour.
, vol.22
, pp. 461-478
-
-
Binning, P.1
Celia, M.A.2
-
2
-
-
70249101702
-
An efficient space-fractional dispersion approximation for stream solute transport modeling
-
C. Shen, and M.S. Phanikumar An efficient space-fractional dispersion approximation for stream solute transport modeling Advan. Watr. Resour. 32 2009 1482 1494
-
(2009)
Advan. Watr. Resour.
, vol.32
, pp. 1482-1494
-
-
Shen, C.1
Phanikumar, M.S.2
-
3
-
-
55649099424
-
A finite element solution for the fractional advectiondispersion equation
-
Q. Huang, G. Huang, and H. Zhan A finite element solution for the fractional advectiondispersion equation Advan. Watr. Resour. 31 2008 1578 1589
-
(2008)
Advan. Watr. Resour.
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
5
-
-
54949107294
-
Time-space continuity of daily maps of fractional snow cover and albedo from MODIS
-
J. Dozier, T.H. Painter, K. Rittger, and J.E. Frew Time-space continuity of daily maps of fractional snow cover and albedo from MODIS Advan. Watr. Resour. 31 2008 1515 1526
-
(2008)
Advan. Watr. Resour.
, vol.31
, pp. 1515-1526
-
-
Dozier, J.1
Painter, T.H.2
Rittger, K.3
Frew, J.E.4
-
8
-
-
71549148064
-
Homotopy perturbation method for solving the spacetime fractional advectiondispersion equation
-
A. Yildirim, and H. Kocak Homotopy perturbation method for solving the spacetime fractional advectiondispersion equation Advan. Watr. Resour. 32 2009 1711 1716
-
(2009)
Advan. Watr. Resour.
, vol.32
, pp. 1711-1716
-
-
Yildirim, A.1
Kocak, H.2
-
10
-
-
79651475645
-
Homotopy Perturbation transform method for nonlinear equations using He's polynomials
-
Y. Khan, and Q. Wu Homotopy Perturbation transform method for nonlinear equations using He's polynomials Comput. Math. Appl. 61 2011 1963 1967
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 1963-1967
-
-
Khan, Y.1
Wu, Q.2
-
11
-
-
73049110616
-
Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel
-
S. Nadeem, and N.S. Akbar Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel Z. Naturforsch. 64a 2009 713 722
-
(2009)
Z. Naturforsch.
, vol.64 A
, pp. 713-722
-
-
Nadeem, S.1
Akbar, N.S.2
-
12
-
-
67349172173
-
Influence of heat transfer on a peristaltic transport of Herschel Bulkley fluid in a non-uniform inclined tube
-
S. Nadeem, and N.S. Akbar Influence of heat transfer on a peristaltic transport of Herschel Bulkley fluid in a non-uniform inclined tube Commun. Nonlinear Sci. Numer. Simul. 14 2009 4100 4113
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 4100-4113
-
-
Nadeem, S.1
Akbar, N.S.2
-
13
-
-
70350726077
-
Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube
-
S. Nadeem, and N.S. Akbar Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube International Communications in Heat and Mass Transfer 36 2009 1050 1059
-
(2009)
International Communications in Heat and Mass Transfer
, vol.36
, pp. 1050-1059
-
-
Nadeem, S.1
Akbar, N.S.2
-
15
-
-
0000092673
-
Variational iteration methoda kind of non-linear analytical technique: Some examples
-
J.H. He Variational iteration methoda kind of non-linear analytical technique: some examples Int. J. Non-Linear Mech. 34 1999 699 708
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
16
-
-
74449084990
-
The variational iteration method which should be followed
-
J.H. He, G.C. Wu, and F. Austin The variational iteration method which should be followed Nonl. Sci. Lett. A 1 2010 1 30
-
(2010)
Nonl. Sci. Lett. A
, vol.1
, pp. 1-30
-
-
He, J.H.1
Wu, G.C.2
Austin, F.3
-
17
-
-
78649846320
-
An alternative approach to differential-difference equations using the variational iteration method
-
N. Faraz, Y. Khan, and F. Austin An alternative approach to differential-difference equations using the variational iteration method Z. Naturforsch. 65a 2010 1055 1059
-
(2010)
Z. Naturforsch.
, vol.65 A
, pp. 1055-1059
-
-
Faraz, N.1
Khan, Y.2
Austin, F.3
-
18
-
-
17644372361
-
An approximate solution for a fractional diffusion-wave equation using the decomposition method
-
DOI 10.1016/j.amc.2004.06.026, PII S0096300304003960
-
K. Al-Khaled, and S. Momani An approximate solution for a fractional diffusion-wave equation using the decomposition method Appl. Math. Comput. 165 2005 473 483 (Pubitemid 40567745)
-
(2005)
Applied Mathematics and Computation
, vol.165
, Issue.2
, pp. 473-483
-
-
Al-Khaled, K.1
Momani, S.2
-
20
-
-
77950456001
-
An effective modification of the Laplace decomposition method for nonlinear equations
-
Y. Khan An effective modification of the Laplace decomposition method for nonlinear equations Int. J. Nonlinear Sci. Numer. Simul. 10 2009 1373 1376
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, pp. 1373-1376
-
-
Khan, Y.1
-
21
-
-
79951858369
-
Application of modified Laplace decomposition method for solving boundary layer equation
-
Y. Khan, and N. Faraz Application of modified Laplace decomposition method for solving boundary layer equation J. King. Saud. Uni. Sci. 23 2011 115 119
-
(2011)
J. King. Saud. Uni. Sci.
, vol.23
, pp. 115-119
-
-
Khan, Y.1
Faraz, N.2
-
22
-
-
77958170006
-
Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations
-
Y. Khan, and F. Austin Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations Z. Naturforsch. 65a 2010 849 853
-
(2010)
Z. Naturforsch.
, vol.65 A
, pp. 849-853
-
-
Khan, Y.1
Austin, F.2
-
23
-
-
67349083949
-
Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of adomian decomposition method
-
S. Nadeem, and N.S. Akbar Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of adomian decomposition method Commun. Nonlinear Sci. Numer. Simul. 14 2009 3844 3855
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 3844-3855
-
-
Nadeem, S.1
Akbar, N.S.2
-
24
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
J.H. He Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Eng. 167 1998 57 68
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
25
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Z. Odibat, and S. Momani The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics Comput. Math. Appl. 58 2009 2199 2208
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
26
-
-
58149263050
-
Analytical solution of a fractional diffusion equation by variational iteration method
-
S. Das Analytical solution of a fractional diffusion equation by variational iteration method Comput. Math. Appl. 57 2009 483 487
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 483-487
-
-
Das, S.1
-
27
-
-
70350564868
-
Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
-
S. Momani, and Z. Odibat Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations Comput. Math. Appl. 58 2009 2199 2208
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Momani, S.1
Odibat, Z.2
-
28
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
DOI 10.1016/j.physleta.2006.02.048, PII S0375960106003148
-
S. Momani, and Z. Odibat Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 355 2006 271 279 (Pubitemid 43783194)
-
(2006)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.355
, Issue.4-5
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
29
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
DOI 10.1016/j.chaos.2005.10.068, PII S0960077905010374
-
S. Momani, and Z. Odibat Numerical comparison of the methods for solving linear differential equations of fractional order Chaos Solitons Fractals 31 2007 1248 1255 (Pubitemid 44345225)
-
(2007)
Chaos, Solitons and Fractals
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
30
-
-
79951849640
-
Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II
-
N. Faraz, Y. Khan, and A. Yildirim Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II J. King. Saud. Uni. Sci. 23 2011 77 81
-
(2011)
J. King. Saud. Uni. Sci.
, vol.23
, pp. 77-81
-
-
Faraz, N.1
Khan, Y.2
Yildirim, A.3
-
31
-
-
43949121726
-
The approximate and exact solutions of the space and time-fractional Burgers equations with initial conditions by variational iteration method
-
Mustafa Inc
-
Mustafa Inc The approximate and exact solutions of the space and time-fractional Burgers equations with initial conditions by variational iteration method J. Math. Anal. Appl. 345 2008 476 484
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 476-484
-
-
-
32
-
-
0006996396
-
General use of the Lagrange multiplier in nonlinear mathematical physics
-
S. Nemat-Nasser, Pergamon Press New York
-
M. Inokuti, H. Sekine, and T. Mura General use of the Lagrange multiplier in nonlinear mathematical physics S. Nemat-Nasser, Variational Methods in the Mechanics of Solids 1978 Pergamon Press New York 156 162
-
(1978)
Variational Methods in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Sekine, H.2
Mura, T.3
-
33
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified RiemannLiouville derivative for non-differentiable functions
-
G. Jumarie Table of some basic fractional calculus formulae derived from a modified RiemannLiouville derivative for non-differentiable functions Appl. Math. Lett. 22 2009 378 385
-
(2009)
Appl. Math. Lett.
, vol.22
, pp. 378-385
-
-
Jumarie, G.1
-
35
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
37
-
-
33745082228
-
New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations
-
DOI 10.1016/j.mcm.2005.10.003, PII S0895717705005303
-
G. Jumarie New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations Math. Comput. Model. 44 2006 231 254 (Pubitemid 43880369)
-
(2006)
Mathematical and Computer Modelling
, vol.44
, Issue.3-4
, pp. 231-254
-
-
Jumarie, G.1
-
38
-
-
70349212072
-
Laplace's transform of fractional order via the MittageLeffler funcation and modified RiemannLiouville derivative
-
G. Jumarie Laplace's transform of fractional order via the MittageLeffler funcation and modified RiemannLiouville derivative Appl. Math. Lett. 22 2009 1659 1664
-
(2009)
Appl. Math. Lett.
, vol.22
, pp. 1659-1664
-
-
Jumarie, G.1
-
39
-
-
77953478412
-
Fractional calculus of variations in fractal sapcetime
-
G.C. Wu, and J.H. He Fractional calculus of variations in fractal sapcetime Nonlinear Sci. Lett. A 1 3 2010 281 287
-
(2010)
Nonlinear Sci. Lett. A
, vol.1
, Issue.3
, pp. 281-287
-
-
Wu, G.C.1
He, J.H.2
-
40
-
-
77953478991
-
Fractional variational iteration method and its application
-
G.C. Wu, and E.W.M. Lee Fractional variational iteration method and its application Phys. Lett. A 374 2010 2506 2509
-
(2010)
Phys. Lett. A
, vol.374
, pp. 2506-2509
-
-
Wu, G.C.1
Lee, E.W.M.2
|