-
1
-
-
0005754478
-
Fractional diffusion equation for fractal-time-continuous-time random walks
-
P.A. Alemany, Fractional diffusion equation for fractal-time-continuous-time random walks, Chaos Solitons Fractals 6, 7-19 (1995).
-
(1995)
Chaos Solitons Fractals
, vol.6
, pp. 7-19
-
-
Alemany, P.A.1
-
2
-
-
0028468278
-
Fractal nature of material microstructure and size effects on apparent mechanical properties
-
A. Carpinteri, Fractal nature of material microstructure and size effects on apparent mechanical properties, Mech. Mater. 18, 89-101 (1994).
-
(1994)
Mech. Mater
, vol.18
, pp. 89-101
-
-
Carpinteri, A.1
-
3
-
-
0028374089
-
Scaling laws and renormalization groups for strength and toughness of disordered materials
-
A. Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials, Int. J. Solids Struct. 31,291-302 (1994).
-
(1994)
Int. J. Solids Struct
, vol.31
, pp. 291-302
-
-
Carpinteri, A.1
-
4
-
-
0003904845
-
-
A Unified Approach (Chapman & Hall, London)
-
A. Carpinteri, Structural Mechanics: A Unified Approach (Chapman & Hall, London, 1997).
-
(1997)
Structural Mechanics
-
-
Carpinteri, A.1
-
5
-
-
0035834542
-
Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
-
A. Carpinteri, B. Chiaia, and P. Cornetti, Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput. Methods Appl. Mech. Eng. 191, 3-19 (2001).
-
(2001)
Comput. Methods Appl. Mech. Eng
, vol.191
, pp. 3-19
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
6
-
-
0742324870
-
The elastic problem for fractal media: Basic theory and finite element formulation
-
A. Carpinteri, B. Chiaia, and P. Cornetti, The elastic problem for fractal media: basic theory and finite element formulation, Comput. Struct. 82, 499-508 (2004).
-
(2004)
Comput. Struct
, vol.82
, pp. 499-508
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
7
-
-
1142264110
-
A disordered microstructure material model based on fractal geometry and fractional calculus
-
A. Carpinteri, B. Chiaia, and P. Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus, Z. Angew. Math. Mech. 84, 128-35 (2004).
-
(2004)
Z. Angew. Math. Mech
, vol.84
, pp. 128-35
-
-
Carpinteri, A.1
Chiaia, B.2
Cornetti, P.3
-
8
-
-
0036028181
-
A fractional calculus approach to the description of stress and strain localization in fractal media
-
A. Carpinteri and P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals 13, 85-94 (2002).
-
(2002)
Chaos Solitons Fractals
, vol.13
, pp. 85-94
-
-
Carpinteri, A.1
Cornetti, P.2
-
9
-
-
64249151881
-
Static-kinematic fractional operators for fractal and non-local solids
-
A. Carpinteri, P. Cornetti, and A. Sapora, Static-kinematic fractional operators for fractal and non-local solids, Z. Angew. Math. Mech. 89, 207-217 (2009).
-
(2009)
Z. Angew. Math. Mech
, vol.89
, pp. 207-217
-
-
Carpinteri, A.1
Cornetti, P.2
Sapora, A.3
-
11
-
-
27744450698
-
Time-space fabric underlying anomalous diffusion
-
W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Solitons Fractals 28, 923-929 (2006).
-
(2006)
Chaos Solitons Fractals
, vol.28
, pp. 923-929
-
-
Chen, W.1
-
12
-
-
46649110521
-
Size effect of thermal conductivity of Si nanocrystals
-
W. Cheng and S.F. Ren, Size effect of thermal conductivity of Si nanocrystals, Solid State Commun. 147, 274-277 (2008).
-
(2008)
Solid State Commun
, vol.147
, pp. 274-277
-
-
Cheng, W.1
Ren, S.F.2
-
13
-
-
36149036329
-
Fractional diffusion equation on fractals-one-dimensional case and asymptotic behavior
-
M. Giona and H. Roman, Fractional diffusion equation on fractals-one-dimensional case and asymptotic behavior, J. Phys. A 25, 2093-2105 (1992).
-
(1992)
J. Phys. A
, vol.25
, pp. 2093-2105
-
-
Giona, M.1
Roman, H.2
-
14
-
-
0030267265
-
Exact solution of linear transport equations in fractal media-I. Renormalization analysis and general theory
-
M. Giona, W. Schwalm, M.K. Schwalm, and A. Adorever, Exact solution of linear transport equations in fractal media-I. Renormalization analysis and general theory, Chem. Eng. Sci. 51, 4717-4729 (1996).
-
(1996)
Chem. Eng. Sci
, vol.51
, pp. 4717-4729
-
-
Giona, M.1
Schwalm, W.2
Schwalm, M.K.3
Adorever, A.4
-
15
-
-
0036828301
-
Discrete random walk for space-time fractional diffusion
-
R. Gorenflo, F. Mainardi, M. Moretti, G. Pagnini, and P. Paradisi, Discrete random walk for space-time fractional diffusion, Chem. Phys. 284, 521-541 (2002).
-
(2002)
Chem. Phys
, vol.284
, pp. 521-541
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, M.3
Pagnini, G.4
Paradisi, P.5
-
16
-
-
67349184476
-
Some recent advances in theory and simulation of fractional diffusion process
-
R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion process, J. Comput. Appl. Math. 229, 400-415 (2009).
-
(2009)
J. Comput. Appl. Math
, vol.229
, pp. 400-415
-
-
Gorenflo, R.1
Mainardi, F.2
-
17
-
-
0036273691
-
Diffusion in disordered media
-
S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Adv. Phys. 51, 187-292 (2002).
-
(2002)
Adv. Phys
, vol.51
, pp. 187-292
-
-
Havlin, S.1
Ben-Avraham, D.2
-
18
-
-
0040655648
-
Fractional differentiability of nowhere differentiable functions and dimensions
-
K.M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6, 505-23 (1996).
-
(1996)
Chaos
, vol.6
, pp. 505-23
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
19
-
-
0001707390
-
Local fractional Fokker-Plank equations
-
K.M. Kolwankar and A.D. Gangal, Local fractional Fokker-Plank equations, Phys. Rev. Lett. 80, 214-7 (1998).
-
(1998)
Phys. Rev. Lett
, vol.80
, pp. 214-7
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
20
-
-
0035427324
-
Further results on Fokker-Planck equation of fractional order
-
G. Jumarie, Further results on Fokker-Planck equation of fractional order, Chaos Solitons Fractals 12, 1873-1886 (2001).
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 1873-1886
-
-
Jumarie, G.1
-
21
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions Further results
-
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions Further results, Comput. Math. Appl. 51, 1367-1376 (2006).
-
(2006)
Comput. Math. Appl
, vol.51
, pp. 1367-1376
-
-
Jumarie, G.1
-
22
-
-
65449159066
-
Probability calculus of fractional order and fractional Taylors series application to Fokker-Planck equation and information of non-random functions
-
G. Jumarie, Probability calculus of fractional order and fractional Taylors series application to Fokker-Planck equation and information of non-random functions, Chaos Solitons Fractals 40, 1428-1448 (2009).
-
(2009)
Chaos Solitons Fractals
, vol.40
, pp. 1428-1448
-
-
Jumarie, G.1
-
23
-
-
0030464353
-
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
-
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals 7, 1461-1477 (1996).
-
(1996)
Chaos Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
24
-
-
0001407424
-
The fundamental solution of the space-time fractional diffusion equation
-
F. Mainardi, Y. Luchko, and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus Appl. Anal. 4, 153-192 (2001).
-
(2001)
Fractional Calculus Appl. Anal
, vol.4
, pp. 153-192
-
-
Mainardi, F.1
Luchko, Y.2
Pagnini, G.3
-
25
-
-
25444463578
-
Finite difference methods for two dimensional fractional dispersion equation
-
M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran, Finite difference methods for two dimensional fractional dispersion equation, J. Comput. Phys. 211, 249-261 (2006).
-
(2006)
J. Comput. Phys
, vol.211
, pp. 249-261
-
-
Meerschaert, M.M.1
Scheffler, H.P.2
Tadjeran, C.3
-
26
-
-
0036828936
-
Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation
-
R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys. 284, 67-90 (2002).
-
(2002)
Chem. Phys
, vol.284
, pp. 67-90
-
-
Metzler, R.1
Nonnenmacher, T.F.2
-
27
-
-
0004681849
-
Fractional integral and its physical interpretation
-
R.R. Nigmatullin, Fractional integral and its physical interpretation, Theor. Math. Phys. 90, 354-368 (1992)
-
(1992)
Theor. Math. Phys
, vol.90
, pp. 354-368
-
-
Nigmatullin, R.R.1
-
29
-
-
26744431713
-
Analytical solutions for diffusion in fractal media
-
B. O'Shaughnessy and I. Procaccia, Analytical solutions for diffusion in fractal media, Phys. Rev. Lett. 54, 455-458 (1985).
-
(1985)
Phys. Rev. Lett
, vol.54
, pp. 455-458
-
-
O'Shaughnessy, B.1
Procaccia, I.2
-
30
-
-
55749086649
-
Analytical solution for the space fractional diffusion equation by two-step Adomian Decomposition Method
-
S. Saha Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian Decomposition Method, Commun. Nonlinear Sci. Numer. Simul. 14, 1295-1306 (2009).
-
(2009)
Commun. Nonlinear Sci. Numer. Simul
, vol.14
, pp. 1295-1306
-
-
Saha Ray, S.1
-
32
-
-
59349092686
-
Fractal diffusion model used for diffusion in porous material within limited volume of stiff container
-
S. Wang, Z.F. Ma, and H.Q. Yao, Fractal diffusion model used for diffusion in porous material within limited volume of stiff container, Chem. Eng. Sci. 64, 1318-1325 (2008).
-
(2008)
Chem. Eng. Sci
, vol.64
, pp. 1318-1325
-
-
Wang, S.1
Ma, Z.F.2
Yao, H.Q.3
-
33
-
-
59349089806
-
Analysis of flow in fractal porous media
-
B. Yu, Analysis of flow in fractal porous media, Appl. Mech. Rev. 61, 1-19 (2008).
-
(2008)
Appl. Mech. Rev
, vol.61
, pp. 1-19
-
-
Yu, B.1
-
35
-
-
16844379685
-
Anomalous fractional diffusion equation for transport phenomena
-
Q. Zeng, H. Li, and D. Liu, Anomalous fractional diffusion equation for transport phenomena, Commun. Nonlinear Sci. Numer. Simul. 4, 99-104 (1999).
-
(1999)
Commun. Nonlinear Sci. Numer. Simul
, vol.4
, pp. 99-104
-
-
Zeng, Q.1
Li, H.2
Liu, D.3
|