-
1
-
-
0003797958
-
-
San Diego, Calif, USA Academic Press Mathematics in Science and Engineering MR1658022
-
Podlubny I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications 1999 198 San Diego, Calif, USA Academic Press Mathematics in Science and Engineering MR1658022
-
(1999)
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, vol.198
-
-
Podlubny, I.1
-
5
-
-
0003427295
-
-
River Edge, NJ, USA World Scientific Publishing 10.1142/9789812817747 MR1890104
-
Hilfer R., Applications of Fractional Calculus in Physics 2000 River Edge, NJ, USA World Scientific Publishing 10.1142/9789812817747 MR1890104
-
(2000)
Applications of Fractional Calculus in Physics
-
-
Hilfer, R.1
-
7
-
-
65049084831
-
-
Hackensack, NJ, USA World Scientific Publishing Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus: Models and Numerical Methods 2012 3 Hackensack, NJ, USA World Scientific Publishing Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 MR2894576
-
(2012)
Fractional Calculus: Models and Numerical Methods
, vol.3
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
12
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
DOI 10.1023/A:1021389004982
-
Klimek M., Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslovak Journal of Physics 2002 52 11 1247 1253 10.1023/A:1021389004982 MR1966935 (Pubitemid 36224481)
-
(2002)
Czechoslovak Journal of Physics
, vol.52
, Issue.11
, pp. 1247-1253
-
-
Klimek, M.1
-
13
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
10.1016/S0022-247X(02)00180-4 MR1930721
-
Agrawal O. P., Formulation of Euler-Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications 2002 272 1 368 379 10.1016/S0022-247X(02)00180-4 MR1930721
-
(2002)
Journal of Mathematical Analysis and Applications
, vol.272
, Issue.1
, pp. 368-379
-
-
Agrawal, O.P.1
-
14
-
-
4043139312
-
Lagrangians with linear velocities within Riemann-Liouville fractional derivatives
-
Baleanu D., Avkar T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento della Societa Italiana di Fisica B 2004 119 1 73 79 2-s2.0-4043139312 (Pubitemid 39057448)
-
(2004)
Nuovo Cimento della Societa Italiana di Fisica B
, vol.119
, Issue.1
, pp. 73-79
-
-
Baleanu, D.1
Avkar, T.2
-
15
-
-
23144435914
-
A note on the fractional-order Chen system
-
DOI 10.1016/j.chaos.2005.04.037, PII S0960077905003590
-
Lu J. G., Chen G., A note on the fractional-order Chen system. Chaos, Solitons and Fractals 2006 27 3 685 688 2-s2.0-23144435914 10.1016/j.chaos.2005. 04.037 (Pubitemid 41084201)
-
(2006)
Chaos, Solitons and Fractals
, vol.27
, Issue.3
, pp. 685-688
-
-
Lu, J.G.1
Chen, G.2
-
16
-
-
34248373867
-
Solving a multi-order fractional differential equation using adomian decomposition
-
DOI 10.1016/j.amc.2006.11.129, PII S0096300306016274
-
Daftardar-Gejji V., Jafari H., Solving a multi-order fractional differential equation using Adomian decomposition. Applied Mathematics and Computation 2007 189 1 541 548 10.1016/j.amc.2006.11.129 MR2330231 (Pubitemid 46734260)
-
(2007)
Applied Mathematics and Computation
, vol.189
, Issue.1
, pp. 541-548
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
18
-
-
84871756844
-
A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials
-
Jafari H., Tajadodi H., Baleanu D., A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fractional Calculus and Applied Analysis 2013 16 109 122
-
(2013)
Fractional Calculus and Applied Analysis
, vol.16
, pp. 109-122
-
-
Jafari, H.1
Tajadodi, H.2
Baleanu, D.3
-
19
-
-
84871731748
-
He's variational iteration method for solving fractional Riccati differential equation
-
764738 MR2607724
-
Jafari H., Tajadodi H., He's variational iteration method for solving fractional Riccati differential equation. International Journal of Differential Equations 2010 2010 8 764738 MR2607724
-
(2010)
International Journal of Differential Equations
, vol.2010
, pp. 8
-
-
Jafari, H.1
Tajadodi, H.2
-
20
-
-
80052264305
-
Solving a multi-order fractional differential equation using homotopy analysis method
-
Jafari H., Das S., Tajadodi H., Solving a multi-order fractional differential equation using homotopy analysis method. Journal of King Saud University 2011 23 2 151 155
-
(2011)
Journal of King Saud University
, vol.23
, Issue.2
, pp. 151-155
-
-
Jafari, H.1
Das, S.2
Tajadodi, H.3
-
21
-
-
84890256375
-
Homotopy perturbation pade technique for solving fractional riccati differential equations
-
Jafari H., Kadkhoda N., Tajadodi H., Hosseini Matikolai S. A., Homotopy perturbation pade technique for solving fractional riccati differential equations. International Journal of Nonlinear Sciences and Numerical Simulation 2010 11 271 275
-
(2010)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.11
, pp. 271-275
-
-
Jafari, H.1
Kadkhoda, N.2
Tajadodi, H.3
Hosseini Matikolai, S.A.4
-
22
-
-
55649099424
-
A finite element solution for the fractional advection-dispersion equation
-
2-s2.0-55649099424 10.1016/j.advwatres.2008.07.002
-
Huang Q., Huang G., Zhan H., A finite element solution for the fractional advection-dispersion equation. Advances in Water Resources 2008 31 12 1578 1589 2-s2.0-55649099424 10.1016/j.advwatres.2008.07.002
-
(2008)
Advances in Water Resources
, vol.31
, Issue.12
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
23
-
-
35348869861
-
Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
-
DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
-
Odibat Z., Momani S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos, Solitons & Fractals 2008 36 1 167 174 10.1016/j.chaos.2006.06.041 MR2372056 (Pubitemid 47576648)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
24
-
-
79251611305
-
A generalized exp-function method for fractional Riccati differential equations
-
Zhang S., Zong Q. A., Liu D., Gao Q., A generalized exp-function method for fractional Riccati differential equations. Communications in Fractional Calculus 2010 1 48 52
-
(2010)
Communications in Fractional Calculus
, vol.1
, pp. 48-52
-
-
Zhang, S.1
Zong, Q.A.2
Liu, D.3
Gao, Q.4
-
25
-
-
79251635229
-
Fractional sub-equation method and its applications to nonlinear fractional PDEs
-
10.1016/j.physleta.2011.01.029 MR2765013
-
Zhang S., Zhang H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs. Physics Letters A 2011 375 7 1069 1073 10.1016/j.physleta.2011.01.029 MR2765013
-
(2011)
Physics Letters A
, vol.375
, Issue.7
, pp. 1069-1073
-
-
Zhang, S.1
Zhang, H.-Q.2
-
26
-
-
4243350479
-
Solitary wave solutions for variant Boussinesq equations
-
10.1016/0375-9601(95)00092-H MR1322452
-
Wang M. L., Solitary wave solutions for variant Boussinesq equations. Physics Letters A 1995 199 3-4 169 172 10.1016/0375-9601(95)00092-H MR1322452
-
(1995)
Physics Letters A
, vol.199
, Issue.3-4
, pp. 169-172
-
-
Wang, M.L.1
-
27
-
-
33745742268
-
Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
-
10.1016/j.camwa.2006.02.001 MR2237634
-
Jumarie G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications 2006 51 9-10 1367 1376 10.1016/j.camwa.2006.02.001 MR2237634
-
(2006)
Computers & Mathematics with Applications
, vol.51
, Issue.9-10
, pp. 1367-1376
-
-
Jumarie, G.1
-
28
-
-
77957924322
-
Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order
-
10.1016/j.aml.2010.08.001 MR2718527
-
Jumarie G., Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order. Applied Mathematics Letters 2010 23 12 1444 1450 10.1016/j.aml.2010.08.001 MR2718527
-
(2010)
Applied Mathematics Letters
, vol.23
, Issue.12
, pp. 1444-1450
-
-
Jumarie, G.1
-
29
-
-
84855193408
-
The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics
-
10.1016/j.physleta.2011.10.056 MR2877750
-
Guo S., Mei L., Li Y., Sun Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Physics Letters A 2012 376 4 407 411 10.1016/j.physleta. 2011.10.056 MR2877750
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 407-411
-
-
Guo, S.1
Mei, L.2
Li, Y.3
Sun, Y.4
-
30
-
-
5144229861
-
A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient
-
10.1016/j.apnum.2004.02.006 MR2091400
-
Choo S. M., Chung S. K., Lee Y. J., A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient. Applied Numerical Mathematics 2004 51 2-3 207 219 10.1016/j.apnum.2004.02.006 MR2091400
-
(2004)
Applied Numerical Mathematics
, vol.51
, Issue.2-3
, pp. 207-219
-
-
Choo, S.M.1
Chung, S.K.2
Lee, Y.J.3
-
31
-
-
0001158204
-
Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance
-
Gurtin M. E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 1996 92 3-4 178 192 10.1016/0167-2789(95)00173-5 MR1387065 (Pubitemid 126687319)
-
(1996)
Physica D: Nonlinear Phenomena
, vol.92
, Issue.3-4
, pp. 178-192
-
-
Gurtin, M.E.1
-
32
-
-
34249662156
-
A numerical method for the Cahn-Hilliard equation with a variable mobility
-
DOI 10.1016/j.cnsns.2006.02.010, PII S1007570406000670
-
Kim J., A numerical method for the Cahn-Hilliard equation with a variable mobility. Communications in Nonlinear Science and Numerical Simulation 2007 12 8 1560 1571 10.1016/j.cnsns.2006.02.010 MR2332646 (Pubitemid 46838592)
-
(2007)
Communications in Nonlinear Science and Numerical Simulation
, vol.12
, Issue.8
, pp. 1560-1571
-
-
Kim, J.1
-
33
-
-
33747332288
-
Auxiliary equation method and new solutions of Klein-Gordon equations
-
DOI 10.1016/j.chaos.2005.10.048, PII S0960077905010131
-
Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations. Chaos, Solitons and Fractals 2007 31 4 943 950 10.1016/j.chaos.2005. 10.048 MR2262187 (Pubitemid 44247666)
-
(2007)
Chaos, Solitons and Fractals
, vol.31
, Issue.4
, pp. 943-950
-
-
Sirendaoreji1
-
34
-
-
0001707390
-
Local fractional Fokker-Planck equation
-
Kolwankar K. M., Gangal A. D., Local fractional Fokker-Planck equation. Physical Review Letters 1998 80 2 214 217 10.1103/PhysRevLett.80.214 MR1604435 (Pubitemid 128621921)
-
(1998)
Physical Review Letters
, vol.80
, Issue.2
, pp. 214-217
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
35
-
-
0242507103
-
Periodic wave solutions to a coupled KdV equations with variable coefficients
-
10.1016/S0375-9601(02)01775-9 MR1972296
-
Zhou Y., Wang M., Wang Y., Periodic wave solutions to a coupled KdV equations with variable coefficients. Physics Letters A 2003 308 1 31 36 10.1016/S0375-9601(02)01775-9 MR1972296
-
(2003)
Physics Letters A
, vol.308
, Issue.1
, pp. 31-36
-
-
Zhou, Y.1
Wang, M.2
Wang, Y.3
|