메뉴 건너뛰기




Volumn 6912 LNAI, Issue PART 2, 2011, Pages 484-500

Aggregating independent and dependent models to learn multi-label classifiers

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION PERFORMANCE; CLASSIFICATION TASKS; CONDITIONAL DEPENDENCE; DATA SETS; EVALUATION MEASURES; LABEL INFORMATION; MULTI-LABEL; OBJECT DESCRIPTION;

EID: 80052416023     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-23783-6_31     Document Type: Conference Paper
Times cited : (20)

References (22)
  • 1
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211-225 (2009)
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 3
    • 77956522919 scopus 로고    scopus 로고
    • Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains
    • Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains. In: ICML, pp. 279-286 (2010)
    • (2010) ICML , pp. 279-286
    • Dembczynski, K.1    Cheng, W.2    Hüllermeier, E.3
  • 4
    • 78049326859 scopus 로고    scopus 로고
    • Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss
    • Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. Springer, Heidelberg
    • Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 280-295. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6321 , pp. 280-295
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30 (2006)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • García, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning Research 9, 2677-2694 (2008)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 14
    • 67049088703 scopus 로고    scopus 로고
    • Multi-label classification using ensembles of pruned sets
    • IEEE, Los Alamitos
    • Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: IEEE Int. Conf. on Data Mining, pp. 995-1000. IEEE, Los Alamitos (2008)
    • (2008) IEEE Int. Conf. on Data Mining , pp. 995-1000
    • Read, J.1    Pfahringer, B.2    Holmes, G.3
  • 15
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Buntine,W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. Springer, Heidelberg
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine,W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 254-269. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5782 , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 16
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning, 135-168 (2000)
    • (2000) Machine Learning , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 19
    • 38049123909 scopus 로고    scopus 로고
    • Random k-Labelsets: An Ensemble Method for Multilabel Classification
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni?c, D., Skowron, A. (eds.) ECML 2007. Springer, Heidelberg
    • Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladeni?c, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406-417. Springer, Heidelberg (2007)
    • (2007) LNCS (LNAI) , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.P.2
  • 20
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D.H.: Stacked generalization. Neural Networks 5, 214-259 (1992)
    • (1992) Neural Networks , vol.5 , pp. 214-259
    • Wolpert, D.H.1
  • 21
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang, M.-L., Zhou, Z.-H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. on Knowl. and Data Eng. 18, 1338-1351 (2006)
    • (2006) IEEE Trans. on Knowl. and Data Eng. , vol.18 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 22
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • Zhang, M.-L., Zhou, Z.-H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038-2048 (2007)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.