메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages 843-848

Backpropagation-Decorrelation: Online recurrent learning with O(N) complexity

Author keywords

[No Author keywords available]

Indexed keywords

NETWORK DYNAMICS; OPTIMIZATION PROBLEM; RECURRENT NETWORKS; TIME CONSTANTS;

EID: 10944225085     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2004.1380039     Document Type: Conference Paper
Times cited : (200)

References (21)
  • 1
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Y. Chauvin and D. E. Rumelhart, Eds. Lawrence Erlbaum Publ.
    • R. J. Williams and D. Zipser, "Gradient-based learning algorithms for recurrent networks and their computational complexity," in Backpropagation: Theory, Architectures, and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Lawrence Erlbaum Publ., 1995, pp. 433-486.
    • (1995) Backpropagation: Theory, Architectures, and Applications , pp. 433-486
    • Williams, R.J.1    Zipser, D.2
  • 2
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B. A. Pearlmutter, "Gradient calculations for dynamic recurrent neural networks: A survey," IEEE Tansactions on Neural Networks, vol. 6, no. 5, pp. 1212-1228, 1995.
    • (1995) IEEE Tansactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 3
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks," Neural Computation, vol. 4, no. 2, pp. 243-248, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.1
  • 4
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng, "An efficient gradient-based algorithm for on-line training of recurrent network trajectories," Neural Computation, vol. 2, no. 4, pp. 490-501, 1990.
    • (1990) Neural Computation , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 5
    • 9144232147 scopus 로고    scopus 로고
    • Tutorial: Perspectives on learning with recurrent neural networks
    • B. Hammer and J. J. Steil, "Tutorial: Perspectives on learning with recurrent neural networks," in Proc. of ESANN, 2002, pp. 357-368.
    • (2002) Proc. of ESANN , pp. 357-368
    • Hammer, B.1    Steil, J.J.2
  • 6
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithms and accelerating convergence
    • A. B. Atiya and A. G. Parlos, "New results on recurrent network training: Unifying the algorithms and accelerating convergence," IEEE Trans. Neural Networks, vol. 11, no. 9, pp. 697-709, 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.9 , pp. 697-709
    • Atiya, A.B.1    Parlos, A.G.2
  • 7
    • 85013775361 scopus 로고    scopus 로고
    • Adaptive nonlinear system identification with echo state networks
    • H. Jaeger, "Adaptive nonlinear system identification with echo state networks," in NIPS, 2002.
    • (2002) NIPS
    • Jaeger, H.1
  • 8
    • 10944220671 scopus 로고    scopus 로고
    • The "liquid computer": A novel strategy for real-time computing on time series
    • T. Natschläger, W. Maass, and H. Markram, "The "liquid computer": A novel strategy for real-time computing on time series," TELEMATIK, vol. 8, no. 1, pp. 39-43, 2002.
    • (2002) TELEMATIK , vol.8 , Issue.1 , pp. 39-43
    • Natschläger, T.1    Maass, W.2    Markram, H.3
  • 9
    • 10944226560 scopus 로고    scopus 로고
    • On the weight dynamcis of recurrent learning
    • U. D. Schiller and J. J. Steil, "On the weight dynamcis of recurrent learning," in Proc. ESANN, 2003, pp. 73-78.
    • (2003) Proc. ESANN , pp. 73-78
    • Schiller, U.D.1    Steil, J.J.2
  • 10
    • 0034506767 scopus 로고    scopus 로고
    • Natural gradient learning for spatio-temporal decorrelation: Recurrent network
    • S. Choi, S. Amari, and A. Cichocki, "Natural gradient learning for spatio-temporal decorrelation: Recurrent network," IEICE Trans. Fundamentals, vol. E83-A, no. 12, 2000.
    • (2000) IEICE Trans. Fundamentals , vol.E83-A , Issue.12
    • Choi, S.1    Amari, S.2    Cichocki, A.3
  • 12
    • 0342948770 scopus 로고    scopus 로고
    • A learning rule for dynamic recruitment and decorrelation
    • K. P. Körding and P. König, "A learning rule for dynamic recruitment and decorrelation," Neural Networks, vol. 13, pp. 1-9, 2000.
    • (2000) Neural Networks , vol.13 , pp. 1-9
    • Körding, K.P.1    König, P.2
  • 13
    • 0033083238 scopus 로고    scopus 로고
    • A conjugate gradient learning algorithm for recurrent neural networks
    • W. F. Chang and M. W. Mak, "A conjugate gradient learning algorithm for recurrent neural networks," Neurocomputing, vol. 24, no. 1-3, pp. 173-189, 1999.
    • (1999) Neurocomputing , vol.24 , Issue.1-3 , pp. 173-189
    • Chang, W.F.1    Mak, M.W.2
  • 14
  • 15
    • 10944248982 scopus 로고    scopus 로고
    • Analyzing the weight dynamics of recurrent learning algorithms
    • in press
    • U. D. Schiller and J. J. Steil, "Analyzing the weight dynamics of recurrent learning algorithms," Neurocomputing, 2004, in press.
    • (2004) Neurocomputing
    • Schiller, U.D.1    Steil, J.J.2
  • 16
    • 0035375070 scopus 로고    scopus 로고
    • Attractive periodic sets in descrete-time recurrent networks (with emphasis on fixed-point stability and bifurcations in two-neuron networks)
    • P. Tiňo, B. G. Home, and C. L. Giles, "Attractive periodic sets in descrete-time recurrent networks (with emphasis on fixed-point stability and bifurcations in two-neuron networks)," Neural Computation, vol. 13, pp. 1379-1414, 2001.
    • (2001) Neural Computation , vol.13 , pp. 1379-1414
    • Tiňo, P.1    Home, B.G.2    Giles, C.L.3
  • 18
    • 0042276525 scopus 로고    scopus 로고
    • The vanishing gradient problem during learning recurrent neural nets and problem solutions
    • S. Hochreiter, "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions," Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 2, pp. 107-116, 1998.
    • (1998) Int. J. Uncertainty, Fuzziness and Knowledge-based Systems , vol.6 , Issue.2 , pp. 107-116
    • Hochreiter, S.1
  • 20
    • 0033344089 scopus 로고    scopus 로고
    • Recurrent learning of input-output stable behaviour in function space: A case study with the Roessler attractor
    • IEE
    • J. J. Steil and H. Ritter, "Recurrent learning of input-output stable behaviour in function space: A case study with the Roessler attractor," in Proc. ICANN 99. IEE, 1999, pp. 761-766.
    • (1999) Proc. ICANN 99 , pp. 761-766
    • Steil, J.J.1    Ritter, H.2
  • 21
    • 0036825795 scopus 로고    scopus 로고
    • Local structural stability of recurrent networks with timevarying weights
    • J. J. Steil, "Local structural stability of recurrent networks with timevarying weights," Neurocomputing, vol. 48, no. 1-4, pp. 39-51, 2002.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 39-51
    • Steil, J.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.