메뉴 건너뛰기




Volumn 4, Issue MAY, 2013, Pages

Deep unsupervised learning on a desktop pc: A primer for cognitive scientists

Author keywords

Cognitive modeling; Computer cluster; Deep neural networks; GPUs; Hierarchical generative models; MPI; Parallel computing architectures; Unsupervised learning

Indexed keywords


EID: 84878913949     PISSN: None     EISSN: 16641078     Source Type: Journal    
DOI: 10.3389/fpsyg.2013.00251     Document Type: Article
Times cited : (28)

References (47)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, D., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147-169.
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 2
    • 53249121490 scopus 로고    scopus 로고
    • The emergent neural modeling system
    • Aisa, B., Mingus, B., and O'Reilly, R. (2008). The emergent neural modeling system. Neural Netw. 21, 1146-1152.
    • (2008) Neural Netw. , vol.21 , pp. 1146-1152
    • Aisa, B.1    Mingus, B.2    O'Reilly, R.3
  • 4
    • 84872343315 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bengio, Y. (2011). Deep learning of representations for unsupervised and transfer learning. Proc. Int. Conf. Mach. Learn. Appl. 7, 1-20.
    • (2011) Proc. Int. Conf. Mach. Learn. Appl. , vol.7 , pp. 1-20
    • Bengio, Y.1
  • 5
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • Bengio, Y., and Lamblin, P. (2007). Greedy layer-wise training of deep networks. Adv. Neural Inf. Process Syst. 19, 153-170.
    • (2007) Adv. Neural Inf. Process Syst. , vol.19 , pp. 153-170
    • Bengio, Y.1    Lamblin, P.2
  • 6
    • 78649669320 scopus 로고    scopus 로고
    • Deep big simple neural nets excel on handwritten digit recognition
    • Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep big simple neural nets excel on handwritten digit recognition. Neural Comput. 22, 3207-3220.
    • (2010) Neural Comput. , vol.22 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 7
    • 84865102156 scopus 로고    scopus 로고
    • Whatever next? Predictive brains, situated agents, and the future of cognitive science
    • Clark, A. (2012). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 1-86.
    • (2012) Behav. Brain Sci. , pp. 1-86
    • Clark, A.1
  • 8
    • 84872812480 scopus 로고    scopus 로고
    • Space coding for sensorimotor transformations can emerge through unsupervised learning
    • De Filippo De Grazia, M., Cutini, S., Lisi, M., and Zorzi, M. (2012a). Space coding for sensorimotor transformations can emerge through unsupervised learning. Cogn. Process. 13, S141-S146.
    • (2012) Cogn. Process. , vol.13
    • De Filippo De Grazia, M.1    Cutini, S.2    Lisi, M.3    Zorzi, M.4
  • 11
    • 33746585678 scopus 로고    scopus 로고
    • SCE Toolboxes for the development of high-level parallel applications
    • Fernández, J., Anguita, M., Ros, E., and Bernier, J. L. (2006). SCE Toolboxes for the development of high-level parallel applications. Lect. Notes Comput. Sci. 1, 518-525.
    • (2006) Lect. Notes Comput. Sci. , vol.1 , pp. 518-525
    • Fernández, J.1    Anguita, M.2    Ros, E.3    Bernier, J.L.4
  • 12
    • 33747443482 scopus 로고
    • Introduction to the Theory of Neural Computation
    • Westview press.
    • Hertz, J. A., Krogh, A. S., and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation, Redwood City: Westview press.
    • (1991) Redwood City
    • Hertz, J.A.1    Krogh, A.S.2    Palmer, R.G.3
  • 13
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800.
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 14
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • Hinton, G. E. (2007). Learning multiple layers of representation. Trends Cogn. Sci. (Regul. Ed.) 11, 428-434.
    • (2007) Trends Cogn. Sci. (Regul. Ed.) , vol.11 , pp. 428-434
    • Hinton, G.E.1
  • 15
    • 78650474133 scopus 로고    scopus 로고
    • A Practical Guide to Training Restricted Boltzmann Machines
    • University of Toronto
    • Hinton, G. E. (2010a). A Practical Guide to Training Restricted Boltzmann Machines. Technical Report UTML TR 2010-003, University of Toronto 9, :1.
    • (2010) Technical Report UTML TR 2010-003 , vol.9 , pp. 1
    • Hinton, G.E.1
  • 17
    • 0031590130 scopus 로고    scopus 로고
    • Generative models for discovering sparse distributed representations
    • Hinton, G. E., and Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1177-1190.
    • (1997) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.352 , pp. 1177-1190
    • Hinton, G.E.1    Ghahramani, Z.2
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., and Osindero, S. (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 22
  • 25
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., and Bottou, L. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2
  • 26
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • NY: ACM Press)
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in International Conference on Machine Learning (New York, NY: ACM Press), 609-616.
    • (2009) International Conference on Machine Learning (New York , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 28
    • 33947377087 scopus 로고    scopus 로고
    • Design and implementation of parallel counter propagation networks using MPI
    • Margaris, A., Souravlas, S., Kotsialos, E., and Roumeliotis, M. (2007). Design and implementation of parallel counter propagation networks using MPI. Informatica 18, 79-102.
    • (2007) Informatica , vol.18 , pp. 79-102
    • Margaris, A.1    Souravlas, S.2    Kotsialos, E.3    Roumeliotis, M.4
  • 30
    • 77957018324 scopus 로고    scopus 로고
    • CNS: a GPU-based framework for simulating cortically-organized networks
    • Cambridge: Massachusetts Institute of Technology.
    • Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: a GPU-based framework for simulating cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013, Cambridge: Massachusetts Institute of Technology.
    • (2010) Technical Report MIT-CSAIL-TR-2010-013
    • Mutch, J.1    Knoblich, U.2    Poggio, T.3
  • 31
    • 78651550268 scopus 로고    scopus 로고
    • Scalable parallel programming with CUDA
    • Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel programming with CUDA. Queue 6, 40.
    • (2008) Queue , vol.6 , pp. 40
    • Nickolls, J.1    Buck, I.2    Garland, M.3    Skadron, K.4
  • 32
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., and Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 33
    • 0032211901 scopus 로고    scopus 로고
    • Six principles for biologically based computational models of cortical cognition
    • O'Reilly, R. C. (1998). Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. (Regul. Ed.) 2, 455-462.
    • (1998) Trends Cogn. Sci. (Regul. Ed.) , vol.2 , pp. 455-462
    • O'Reilly, R.C.1
  • 34
    • 49049088756 scopus 로고    scopus 로고
    • GPU computing
    • Owens, J., and Houston, M. (2008). GPU computing. Proc. IEEE 96, 879-899.
    • (2008) Proc. IEEE , vol.96 , pp. 879-899
    • Owens, J.1    Houston, M.2
  • 35
  • 37
    • 71149105669 scopus 로고    scopus 로고
    • "Large-scale deep unsupervised learning using graphics processors
    • (New York, NY: ACM Press)
    • Raina, R., Madhavan, A., and Ng, A. Y. (2009). "Large-scale deep unsupervised learning using graphics processors," in International Conference on Machine Learning (New York, NY: ACM Press), 1-8.
    • (2009) in International Conference on Machine Learning , pp. 1-8
    • Raina, R.1    Madhavan, A.2    Ng, A.Y.3
  • 38
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
    • Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79-87.
    • (1999) Nat. Neurosci. , vol.2 , pp. 79-87
    • Rao, R.P.N.1    Ballard, D.H.2
  • 39
    • 84877755914 scopus 로고    scopus 로고
    • A better way to pretrain deep Boltzmann machines
    • Salakhutdinov, R., and Hinton, G. (2012). A better way to pretrain deep Boltzmann machines. Adv. Neural Inf. Process Syst. 25, 2456-2464.
    • (2012) Adv. Neural Inf. Process Syst. , vol.25 , pp. 2456-2464
    • Salakhutdinov, R.1    Hinton, G.2
  • 40
    • 0029298160 scopus 로고
    • Phonological recoding and self-teaching: sine qua non of reading acquisition
    • 151-218; discussion
    • Share, D. L. (1995). Phonological recoding and self-teaching: sine qua non of reading acquisition. Cognition 55, 151-218; discussion 219-226.
    • (1995) Cognition , vol.55 , pp. 219-226
    • Share, D.L.1
  • 41
    • 59249093770 scopus 로고    scopus 로고
    • MATLAB®: a language for parallel computing
    • Sharma, G., and Martin, J. (2008). MATLAB®: a language for parallel computing. Int. J. Parallel Program. 37, 3-36.
    • (2008) Int. J. Parallel Program. , vol.37 , pp. 3-36
    • Sharma, G.1    Martin, J.2
  • 42
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: foundations of harmony theory," in Parallel Distributed Processing
    • Eds D. E. Rumelhart, and J. L. McClelland (Cambridge: MIT Press), 1
    • Smolensky, P. (1986). "Information processing in dynamical systems: foundations of harmony theory," in Parallel Distributed Processing. Explorations in the Microstructure of Cognition, Vol. 1, eds D. E. Rumelhart, and J. L. McClelland (Cambridge: MIT Press), 1, 194-281.
    • (1986) Explorations in the Microstructure of Cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 43
    • 84856250502 scopus 로고    scopus 로고
    • Emergence of a "visual number sense" in hierarchical generative models
    • Stoianov, I., and Zorzi, M. (2012). Emergence of a "visual number sense" in hierarchical generative models. Nat. Neurosci. 15, 194-196.
    • (2012) Nat. Neurosci. , vol.15 , pp. 194-196
    • Stoianov, I.1    Zorzi, M.2
  • 44
    • 80053455455 scopus 로고    scopus 로고
    • Gnumpy: an easy way to use GPU boards in Python
    • University of Toronto, Toronto.
    • Tieleman, T. (2010). Gnumpy: an easy way to use GPU boards in Python. Technical Report UTML TR 2010-002, University of Toronto, Toronto.
    • (2010) Technical Report UTML TR 2010-002
    • Tieleman, T.1
  • 45
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • Wilson, D. R., and Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Netw. 16, 1429-1451.
    • (2003) Neural Netw. , vol.16 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2
  • 47
    • 77954990040 scopus 로고    scopus 로고
    • The connectionist dual process (CDP) approach to modelling reading aloud
    • Zorzi, M. (2010). The connectionist dual process (CDP) approach to modelling reading aloud. Eur. J. Cogn. Psychol. 22, 836-860.
    • (2010) Eur. J. Cogn. Psychol. , vol.22 , pp. 836-860
    • Zorzi, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.