메뉴 건너뛰기




Volumn 255, Issue , 2014, Pages 216-230

Numerical solution of nonlinear fractional differential equations by spline collocation methods

Author keywords

Caputo derivative; Graded grid; Nonlinear fractional differential equation; Spline collocation method

Indexed keywords

ATTAINABLE ORDER OF CONVERGENCE; CAPUTO DERIVATIVES; GRADED GRID; NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS; NUMERICAL SOLUTION; PIECEWISE POLYNOMIALS; REGULARITY PROPERTIES; SPLINE COLLOCATION METHODS;

EID: 84878782898     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2013.04.049     Document Type: Article
Times cited : (83)

References (31)
  • 2
    • 0035382421 scopus 로고    scopus 로고
    • Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels
    • H. Brunner, A. Pedas, and G. Vainikko Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 2001 957 982
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 957-982
    • Brunner, H.1    Pedas, A.2    Vainikko, G.3
  • 6
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • DOI 10.1023/B:NUMA.0000027736.85078.be
    • K. Diethelm, N.J. Ford, and A.D. Freed Detailed error analysis for a fractional Adams method Numer. Algorithms 36 2004 31 52 (Pubitemid 39072748)
    • (2004) Numerical Algorithms , vol.36 , Issue.1 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 7
    • 26444438049 scopus 로고    scopus 로고
    • Pitfalls in fast numerical solvers for fractional differential equations
    • K. Diethelm, J.M. Ford, N.J. Ford, and M. Weilbeer Pitfalls in fast numerical solvers for fractional differential equations J. Comput. Appl. Math. 229 2006 382 391
    • (2006) J. Comput. Appl. Math. , vol.229 , pp. 382-391
    • Diethelm, K.1    Ford, J.M.2    Ford, N.J.3    Weilbeer, M.4
  • 8
    • 84878797125 scopus 로고    scopus 로고
    • Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations
    • N.J. Ford, and J.A. Connoly Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations J. Comput. Appl. Math. 186 2009 482 503
    • (2009) J. Comput. Appl. Math. , vol.186 , pp. 482-503
    • Ford, N.J.1    Connoly, J.A.2
  • 9
    • 67649224114 scopus 로고    scopus 로고
    • Solving fractional integral equations by Haar wavelet method
    • Ü. Lepik Solving fractional integral equations by Haar wavelet method Appl. Math. Comput. 214 2009 468 478
    • (2009) Appl. Math. Comput. , vol.214 , pp. 468-478
    • Lepik, Ü.1
  • 10
    • 77950362487 scopus 로고    scopus 로고
    • A numerical method for solution of semidifferential equations
    • M.H. Hamarsheh, and E.A. Rawashdeh A numerical method for solution of semidifferential equations Mat. Vesnik 62 2010 117 126
    • (2010) Mat. Vesnik , vol.62 , pp. 117-126
    • Hamarsheh, M.H.1    Rawashdeh, E.A.2
  • 11
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order Comput. Math. Appl. 62 2011 2364 2373
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 12
    • 79953828683 scopus 로고    scopus 로고
    • On the convergence of spline collocation methods for solving fractional differential equations
    • A. Pedas, and E. Tamme On the convergence of spline collocation methods for solving fractional differential equations J. Comput. Appl. Math. 235 2011 3502 3514
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 3502-3514
    • Pedas, A.1    Tamme, E.2
  • 13
    • 80051547022 scopus 로고    scopus 로고
    • Spline collocation methods for linear multi-term fractional differential equations
    • A. Pedas, and E. Tamme Spline collocation methods for linear multi-term fractional differential equations J. Comput. Appl. Math. 236 2011 167 176
    • (2011) J. Comput. Appl. Math. , vol.236 , pp. 167-176
    • Pedas, A.1    Tamme, E.2
  • 14
    • 84859537689 scopus 로고    scopus 로고
    • Piecewise polynomial collocation for linear boundary value problems of fractional differential equations
    • A. Pedas, and E. Tamme Piecewise polynomial collocation for linear boundary value problems of fractional differential equations J. Comput. Appl. Math. 236 2012 3349 3359
    • (2012) J. Comput. Appl. Math. , vol.236 , pp. 3349-3359
    • Pedas, A.1    Tamme, E.2
  • 17
    • 0040575075 scopus 로고    scopus 로고
    • The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
    • H. Brunner, A. Pedas, and G. Vainikko The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations Math. Comp. 1999 1079 1095
    • (1999) Math. Comp. , pp. 1079-1095
    • Brunner, H.1    Pedas, A.2    Vainikko, G.3
  • 18
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 19
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solution
    • K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solution Appl. Math. Comput. 154 2004 621 640
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 20
    • 45049084850 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala General uniqueness and monotone iterative technique for fractional differential equations Appl. Math. Lett. 21 2008 828 834
    • (2008) Appl. Math. Lett. , vol.21 , pp. 828-834
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 21
    • 63449095682 scopus 로고    scopus 로고
    • Nonsmooth analysis and fractional differential equations
    • J. Vasundhara Devi, and V. Lakshmikantham Nonsmooth analysis and fractional differential equations Nonlinear Anal. 70 2009 4151 4157
    • (2009) Nonlinear Anal. , vol.70 , pp. 4151-4157
    • Vasundhara Devi, J.1    Lakshmikantham, V.2
  • 22
    • 74149092121 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for a system of fractional differential equations
    • Yong Zhou Existence and uniqueness of solutions for a system of fractional differential equations Fract. Calc. Appl. Anal. 12 2009 195 204
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , pp. 195-204
    • Zhou, Y.1
  • 23
    • 77958524248 scopus 로고    scopus 로고
    • On the Aronszajn property for an implicit differential equation of fractional order
    • A. Dutkiewicz, and S. Szufla On the Aronszajn property for an implicit differential equation of fractional order Z. Anal. Anwend. 29 2010 429 435
    • (2010) Z. Anal. Anwend. , vol.29 , pp. 429-435
    • Dutkiewicz, A.1    Szufla, S.2
  • 24
    • 76649111047 scopus 로고    scopus 로고
    • On the global existence of solutions to a class of fractional differential equations
    • D. Bǎleanu, and O.G. Mustafa On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 2010 1835 1841
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1835-1841
    • Bǎleanu, D.1    Mustafa, O.G.2
  • 25
    • 84864945826 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for initial value problem of nonlinear fractional differential equations
    • (Art. ID 615230)
    • Q. Li, S. Sun, P. Zhao, and Z. Han Existence and uniqueness of solutions for initial value problem of nonlinear fractional differential equations Abstr. Appl. Anal. 2012 14 (Art. ID 615230)
    • (2012) Abstr. Appl. Anal. , pp. 14
    • Li, Q.1    Sun, S.2    Zhao, P.3    Han, Z.4
  • 26
    • 0013546765 scopus 로고
    • The smoothness of solutions to nonlinear weakly singular integral equations
    • A. Pedas, and G. Vainikko The smoothness of solutions to nonlinear weakly singular integral equations Z. Anal. Anwend. 13 1994 463 476
    • (1994) Z. Anal. Anwend. , vol.13 , pp. 463-476
    • Pedas, A.1    Vainikko, G.2
  • 27
    • 33845580677 scopus 로고    scopus 로고
    • Integral equations with diagonal and boundary singularities of the kernel
    • A. Pedas, and G. Vainikko Integral equations with diagonal and boundary singularities of the kernel Z. Anal. Anwend. 25 2006 457 486
    • (2006) Z. Anal. Anwend. , vol.25 , pp. 457-486
    • Pedas, A.1    Vainikko, G.2
  • 28
    • 0035995563 scopus 로고    scopus 로고
    • The curious history of Faà di Bruno's formula
    • W.P. Johnson The curious history of Faà di Bruno's formula Amer. Math. Monthly 109 2002 217 234
    • (2002) Amer. Math. Monthly , vol.109 , pp. 217-234
    • Johnson, W.P.1
  • 31
    • 0000750578 scopus 로고
    • Approximative methods for nonlinear equations (two approaches to the convergence problem)
    • G. Vainikko Approximative methods for nonlinear equations (two approaches to the convergence problem) Nonlinear Anal. 2 1978 647 687
    • (1978) Nonlinear Anal. , vol.2 , pp. 647-687
    • Vainikko, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.