-
2
-
-
0035382421
-
Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels
-
H. Brunner, A. Pedas, and G. Vainikko Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 2001 957 982
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, pp. 957-982
-
-
Brunner, H.1
Pedas, A.2
Vainikko, G.3
-
6
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
DOI 10.1023/B:NUMA.0000027736.85078.be
-
K. Diethelm, N.J. Ford, and A.D. Freed Detailed error analysis for a fractional Adams method Numer. Algorithms 36 2004 31 52 (Pubitemid 39072748)
-
(2004)
Numerical Algorithms
, vol.36
, Issue.1
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
7
-
-
26444438049
-
Pitfalls in fast numerical solvers for fractional differential equations
-
K. Diethelm, J.M. Ford, N.J. Ford, and M. Weilbeer Pitfalls in fast numerical solvers for fractional differential equations J. Comput. Appl. Math. 229 2006 382 391
-
(2006)
J. Comput. Appl. Math.
, vol.229
, pp. 382-391
-
-
Diethelm, K.1
Ford, J.M.2
Ford, N.J.3
Weilbeer, M.4
-
8
-
-
84878797125
-
Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations
-
N.J. Ford, and J.A. Connoly Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations J. Comput. Appl. Math. 186 2009 482 503
-
(2009)
J. Comput. Appl. Math.
, vol.186
, pp. 482-503
-
-
Ford, N.J.1
Connoly, J.A.2
-
9
-
-
67649224114
-
Solving fractional integral equations by Haar wavelet method
-
Ü. Lepik Solving fractional integral equations by Haar wavelet method Appl. Math. Comput. 214 2009 468 478
-
(2009)
Appl. Math. Comput.
, vol.214
, pp. 468-478
-
-
Lepik, Ü.1
-
10
-
-
77950362487
-
A numerical method for solution of semidifferential equations
-
M.H. Hamarsheh, and E.A. Rawashdeh A numerical method for solution of semidifferential equations Mat. Vesnik 62 2010 117 126
-
(2010)
Mat. Vesnik
, vol.62
, pp. 117-126
-
-
Hamarsheh, M.H.1
Rawashdeh, E.A.2
-
11
-
-
80052270048
-
A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
-
E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order Comput. Math. Appl. 62 2011 2364 2373
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 2364-2373
-
-
Doha, E.H.1
Bhrawy, A.H.2
Ezz-Eldien, S.S.3
-
12
-
-
79953828683
-
On the convergence of spline collocation methods for solving fractional differential equations
-
A. Pedas, and E. Tamme On the convergence of spline collocation methods for solving fractional differential equations J. Comput. Appl. Math. 235 2011 3502 3514
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 3502-3514
-
-
Pedas, A.1
Tamme, E.2
-
13
-
-
80051547022
-
Spline collocation methods for linear multi-term fractional differential equations
-
A. Pedas, and E. Tamme Spline collocation methods for linear multi-term fractional differential equations J. Comput. Appl. Math. 236 2011 167 176
-
(2011)
J. Comput. Appl. Math.
, vol.236
, pp. 167-176
-
-
Pedas, A.1
Tamme, E.2
-
14
-
-
84859537689
-
Piecewise polynomial collocation for linear boundary value problems of fractional differential equations
-
A. Pedas, and E. Tamme Piecewise polynomial collocation for linear boundary value problems of fractional differential equations J. Comput. Appl. Math. 236 2012 3349 3359
-
(2012)
J. Comput. Appl. Math.
, vol.236
, pp. 3349-3359
-
-
Pedas, A.1
Tamme, E.2
-
17
-
-
0040575075
-
The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
-
H. Brunner, A. Pedas, and G. Vainikko The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations Math. Comp. 1999 1079 1095
-
(1999)
Math. Comp.
, pp. 1079-1095
-
-
Brunner, H.1
Pedas, A.2
Vainikko, G.3
-
18
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
19
-
-
3042709180
-
Multi-order fractional differential equations and their numerical solution
-
K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solution Appl. Math. Comput. 154 2004 621 640
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 621-640
-
-
Diethelm, K.1
Ford, N.J.2
-
20
-
-
45049084850
-
General uniqueness and monotone iterative technique for fractional differential equations
-
V. Lakshmikantham, and A.S. Vatsala General uniqueness and monotone iterative technique for fractional differential equations Appl. Math. Lett. 21 2008 828 834
-
(2008)
Appl. Math. Lett.
, vol.21
, pp. 828-834
-
-
Lakshmikantham, V.1
Vatsala, A.S.2
-
21
-
-
63449095682
-
Nonsmooth analysis and fractional differential equations
-
J. Vasundhara Devi, and V. Lakshmikantham Nonsmooth analysis and fractional differential equations Nonlinear Anal. 70 2009 4151 4157
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 4151-4157
-
-
Vasundhara Devi, J.1
Lakshmikantham, V.2
-
22
-
-
74149092121
-
Existence and uniqueness of solutions for a system of fractional differential equations
-
Yong Zhou Existence and uniqueness of solutions for a system of fractional differential equations Fract. Calc. Appl. Anal. 12 2009 195 204
-
(2009)
Fract. Calc. Appl. Anal.
, vol.12
, pp. 195-204
-
-
Zhou, Y.1
-
23
-
-
77958524248
-
On the Aronszajn property for an implicit differential equation of fractional order
-
A. Dutkiewicz, and S. Szufla On the Aronszajn property for an implicit differential equation of fractional order Z. Anal. Anwend. 29 2010 429 435
-
(2010)
Z. Anal. Anwend.
, vol.29
, pp. 429-435
-
-
Dutkiewicz, A.1
Szufla, S.2
-
24
-
-
76649111047
-
On the global existence of solutions to a class of fractional differential equations
-
D. Bǎleanu, and O.G. Mustafa On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 2010 1835 1841
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1835-1841
-
-
Bǎleanu, D.1
Mustafa, O.G.2
-
25
-
-
84864945826
-
Existence and uniqueness of solutions for initial value problem of nonlinear fractional differential equations
-
(Art. ID 615230)
-
Q. Li, S. Sun, P. Zhao, and Z. Han Existence and uniqueness of solutions for initial value problem of nonlinear fractional differential equations Abstr. Appl. Anal. 2012 14 (Art. ID 615230)
-
(2012)
Abstr. Appl. Anal.
, pp. 14
-
-
Li, Q.1
Sun, S.2
Zhao, P.3
Han, Z.4
-
26
-
-
0013546765
-
The smoothness of solutions to nonlinear weakly singular integral equations
-
A. Pedas, and G. Vainikko The smoothness of solutions to nonlinear weakly singular integral equations Z. Anal. Anwend. 13 1994 463 476
-
(1994)
Z. Anal. Anwend.
, vol.13
, pp. 463-476
-
-
Pedas, A.1
Vainikko, G.2
-
27
-
-
33845580677
-
Integral equations with diagonal and boundary singularities of the kernel
-
A. Pedas, and G. Vainikko Integral equations with diagonal and boundary singularities of the kernel Z. Anal. Anwend. 25 2006 457 486
-
(2006)
Z. Anal. Anwend.
, vol.25
, pp. 457-486
-
-
Pedas, A.1
Vainikko, G.2
-
28
-
-
0035995563
-
The curious history of Faà di Bruno's formula
-
W.P. Johnson The curious history of Faà di Bruno's formula Amer. Math. Monthly 109 2002 217 234
-
(2002)
Amer. Math. Monthly
, vol.109
, pp. 217-234
-
-
Johnson, W.P.1
-
31
-
-
0000750578
-
Approximative methods for nonlinear equations (two approaches to the convergence problem)
-
G. Vainikko Approximative methods for nonlinear equations (two approaches to the convergence problem) Nonlinear Anal. 2 1978 647 687
-
(1978)
Nonlinear Anal.
, vol.2
, pp. 647-687
-
-
Vainikko, G.1
|