-
4
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., and Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229-248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
5
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency indepedent II
-
Caputo M. Linear models of dissipation whose Q is almost frequency indepedent II. Geophys. J. Roy. Astron. 13 (1967) 529-539
-
(1967)
Geophys. J. Roy. Astron.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
6
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider W.R., and Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 30 (1989) 134-144
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
7
-
-
0026260899
-
Fractional integral operators and Fox functions in the theory of viscoelasticity
-
Glöcke W.G., and Nonnenmacher T.F. Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24 (1991) 6426-6434
-
(1991)
Macromolecules
, vol.24
, pp. 6426-6434
-
-
Glöcke, W.G.1
Nonnenmacher, T.F.2
-
12
-
-
14844296496
-
A probabilistic interpretation of the fractional-order differentiation
-
Tenreiro Machado J.A. A probabilistic interpretation of the fractional-order differentiation. Fract. Calc. Appl. Anal. 8 (2003) 73-80
-
(2003)
Fract. Calc. Appl. Anal.
, vol.8
, pp. 73-80
-
-
Tenreiro Machado, J.A.1
-
13
-
-
38349041965
-
Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
-
Magin R.L., Abdullah O., Bǎleanu D., and Xiaohong J.Z. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190 (2008) 255-270
-
(2008)
J. Magn. Reson.
, vol.190
, pp. 255-270
-
-
Magin, R.L.1
Abdullah, O.2
Bǎleanu, D.3
Xiaohong, J.Z.4
-
15
-
-
0028878140
-
A fractional calculus approach to self-similar protein dynamics
-
Glöcke W.G., and Nonnenmacher T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68 (1995) 46-53
-
(1995)
Biophys. J.
, vol.68
, pp. 46-53
-
-
Glöcke, W.G.1
Nonnenmacher, T.F.2
-
17
-
-
51449091068
-
Advances in fractional calculus
-
Sabatier J., Agrawal O.P., and Tenreiro Machado J.A. (Eds), Springer-Verlag, Dordrecht
-
Advances in fractional calculus. In: Sabatier J., Agrawal O.P., and Tenreiro Machado J.A. (Eds). Theoretical Developments and Applications in Physics and Engineering (2007), Springer-Verlag, Dordrecht
-
(2007)
Theoretical Developments and Applications in Physics and Engineering
-
-
-
18
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J.Math. Anal. Appl. 272 (2002) 368-379
-
(2002)
J.Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
19
-
-
41849118424
-
Variational problems with fractional derivatives: Euler-Lagrange equations
-
art. no. 095201
-
Atanackoviç T.M., Konjik S., and Pipiloviç S. Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A: Math. Theor. 41 9 (2008) art. no. 095201
-
(2008)
J. Phys. A: Math. Theor.
, vol.41
, Issue.9
-
-
Atanackoviç, T.M.1
Konjik, S.2
Pipiloviç, S.3
-
20
-
-
33750541076
-
Fractional Hamiltonian analysis of higher order derivatives systems
-
art. no. 103503
-
Bǎleanu D., Muslih S.I., and Taş K. Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47 (2006) art. no. 103503
-
(2006)
J. Math. Phys.
, vol.47
-
-
Bǎleanu, D.1
Muslih, S.I.2
Taş, K.3
-
21
-
-
33845669957
-
Fractional Hamilton formalism within Caputo's derivative
-
Bǎleanu D., and Agrawal O.P. Fractional Hamilton formalism within Caputo's derivative. Czech. J. Phys. 56 (2006) 1087-1092
-
(2006)
Czech. J. Phys.
, vol.56
, pp. 1087-1092
-
-
Bǎleanu, D.1
Agrawal, O.P.2
-
22
-
-
23344444772
-
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
-
Bǎleanu D., and Muslih S.I. Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72 (2005) 119-121
-
(2005)
Phys. Scr.
, vol.72
, pp. 119-121
-
-
Bǎleanu, D.1
Muslih, S.I.2
-
23
-
-
4043139312
-
Lagrangians with linear velocities within Riemann-Liouville fractional derivatives
-
Bǎleanu D., and Avkar T. Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cim. B 119 (2004) 73-79
-
(2004)
Nuovo Cim. B
, vol.119
, pp. 73-79
-
-
Bǎleanu, D.1
Avkar, T.2
-
24
-
-
44649172155
-
On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative
-
Bǎleanu D., Muslih S.I., and Rabei E.M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dynam. 53 (2008) 67-74
-
(2008)
Nonlinear Dynam.
, vol.53
, pp. 67-74
-
-
Bǎleanu, D.1
Muslih, S.I.2
Rabei, E.M.3
-
25
-
-
48149092929
-
New applications of fractional variational principles
-
Bǎleanu D., and Trujillo J.J. New applications of fractional variational principles. Rep. Math. Phys. 61 (2008) 331-335
-
(2008)
Rep. Math. Phys.
, vol.61
, pp. 331-335
-
-
Bǎleanu, D.1
Trujillo, J.J.2
-
26
-
-
42449096849
-
On exact solutions of a class of fractional Euler-Lagrange equations
-
Bǎleanu D. On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dynam. 52 (2008) 199-206
-
(2008)
Nonlinear Dynam.
, vol.52
, pp. 199-206
-
-
Bǎleanu, D.1
-
27
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems of the calculus of variations
-
Frederico G.S.F., and Torres D.F.M. A formulation of Noether's theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334 (2007) 834-846
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
28
-
-
0035737230
-
Fractional sequential mechanics-models with symmetric fractional derivative
-
Klimek M. Fractional sequential mechanics-models with symmetric fractional derivative. Czech. J. Phys. 51 (2001) 1348-1356
-
(2001)
Czech. J. Phys.
, vol.51
, pp. 1348-1356
-
-
Klimek, M.1
-
29
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
Klimek M. Lagrangean and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52 (2002) 1247-1252
-
(2002)
Czech. J. Phys.
, vol.52
, pp. 1247-1252
-
-
Klimek, M.1
-
30
-
-
14844283120
-
Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives
-
Muslih S.I., and Bǎleanu D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304 (2005) 599-606
-
(2005)
J. Math. Anal. Appl.
, vol.304
, pp. 599-606
-
-
Muslih, S.I.1
Bǎleanu, D.2
-
31
-
-
53949111458
-
Basic theory of fractional differential equations
-
Lakshmikantham V., and Vatsala A.S. Basic theory of fractional differential equations. Nonlinear Anal. TMA 69 (2008) 2677-2682
-
(2008)
Nonlinear Anal. TMA
, vol.69
, pp. 2677-2682
-
-
Lakshmikantham, V.1
Vatsala, A.S.2
-
32
-
-
51349139941
-
Theory of fractional functional differential equations
-
10.1016/j.na.2007.09.025
-
Lakshmikantham V. Theory of fractional functional differential equations. Nonlinear Anal. TMA 69 10 (2008) 3337-3343 10.1016/j.na.2007.09.025
-
(2008)
Nonlinear Anal. TMA
, vol.69
, Issue.10
, pp. 3337-3343
-
-
Lakshmikantham, V.1
-
34
-
-
84979309618
-
Zur Theorie und Anwendung des Iterationsverfahrens
-
Weissinger J. Zur Theorie und Anwendung des Iterationsverfahrens. Math. Nachr. 8 (1952) 193-212
-
(1952)
Math. Nachr.
, vol.8
, pp. 193-212
-
-
Weissinger, J.1
-
35
-
-
0003864328
-
-
McGraw-Hill, New York
-
Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F.G. Higher Transcendental Functions III (1955), McGraw-Hill, New York
-
(1955)
Higher Transcendental Functions III
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
36
-
-
0037466696
-
Modification of the application of a contraction mapping method on a class of fractional differential equation
-
El-Raheem Z.F.A. Modification of the application of a contraction mapping method on a class of fractional differential equation. Appl. Math. Comput. 137 (2003) 371-374
-
(2003)
Appl. Math. Comput.
, vol.137
, pp. 371-374
-
-
El-Raheem, Z.F.A.1
|