메뉴 건너뛰기




Volumn 236, Issue 2, 2011, Pages 167-176

Spline collocation methods for linear multi-term fractional differential equations

Author keywords

Caputo derivative; Fractional differential equation; Graded grid; Spline collocation method; Volterra integral equation

Indexed keywords

CAPUTO DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; GRADED GRID; SPLINE COLLOCATION METHOD; VOLTERRA INTEGRAL EQUATIONS;

EID: 80051547022     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2011.06.015     Document Type: Article
Times cited : (74)

References (22)
  • 1
    • 77956153506 scopus 로고    scopus 로고
    • The Analysis of Fractional Differential Equations
    • Springer Berlin
    • K. Diethelm The Analysis of Fractional Differential Equations Lecture Notes in Mathematics vol. 2004 2010 Springer Berlin
    • (2010) Lecture Notes in Mathematics , vol.2004
    • Diethelm, K.1
  • 2
    • 0035382421 scopus 로고    scopus 로고
    • Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels
    • H. Brunner, A. Pedas, and G. Vainikko Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 2001 957 982
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 957-982
    • Brunner, H.1    Pedas, A.2    Vainikko, G.3
  • 6
    • 0348158242 scopus 로고    scopus 로고
    • mE methods
    • mE methods Computing 71 2003 305 319
    • (2003) Computing , vol.71 , pp. 305-319
    • Diethelm, K.1
  • 7
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solution
    • K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solution Appl. Math. Comput. 154 2004 621 640
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 8
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-term fractional differential equations: Systems of equations
    • DOI 10.1016/S0377-0427(02)00558-7, PII S0377042702005587
    • J.T. Edwards, N.J. Ford, and A.C. Simpson The numerical solution of linear multi-term fractional differential equations: systems of equations J. Comput. Appl. Math. 148 2002 401 418 (Pubitemid 36409200)
    • (2002) Journal of Computational and Applied Mathematics , vol.148 , Issue.2 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, C.A.3
  • 9
    • 9744276851 scopus 로고    scopus 로고
    • Numerical methods for multi-term fractional (arbitrary) orders differential equations
    • A.E.M. El-Mesiry, A.M.A. El-Sayed, and H.A.A. El-Saka Numerical methods for multi-term fractional (arbitrary) orders differential equations Appl. Math. Comput. 160 2005 683 699
    • (2005) Appl. Math. Comput. , vol.160 , pp. 683-699
    • El-Mesiry, A.E.M.1    El-Sayed, A.M.A.2    El-Saka, H.A.A.3
  • 10
    • 67349259080 scopus 로고    scopus 로고
    • Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations
    • N.J. Ford, and J.A. Connoly Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations J. Comput. Appl. Math. 229 2009 382 391
    • (2009) J. Comput. Appl. Math. , vol.229 , pp. 382-391
    • Ford, N.J.1    Connoly, J.A.2
  • 14
    • 33746833310 scopus 로고    scopus 로고
    • Spline collocation method for integro-differential equations with weakly singular kernels
    • DOI 10.1016/j.cam.2005.07.035, PII S037704270500659X
    • A. Pedas, and E. Tamme Spline collocation method for integro-differential equations with weakly singular kernels J. Comput. Appl. Math. 197 2006 253 269 (Pubitemid 44176254)
    • (2006) Journal of Computational and Applied Mathematics , vol.197 , Issue.1 , pp. 253-269
    • Pedas, A.1    Tamme, E.2
  • 15
    • 79953828683 scopus 로고    scopus 로고
    • On the convergence of spline collocation methods for solving fractional differential equations
    • A. Pedas, and E. Tamme On the convergence of spline collocation methods for solving fractional differential equations J. Comput. Appl. Math. 235 2011 3502 3514
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 3502-3514
    • Pedas, A.1    Tamme, E.2
  • 16
    • 0344774198 scopus 로고    scopus 로고
    • Numerical treatment of differential equations of fractional order
    • L. Blank Numerical treatment of differential equations of fractional order Nonlinear World 4 1997 473 491
    • (1997) Nonlinear World , vol.4 , pp. 473-491
    • Blank, L.1
  • 17
    • 4043168480 scopus 로고    scopus 로고
    • Mixed collocation for fractional differential equations
    • F. Dubois, and S. Mengu Mixed collocation for fractional differential equations Numer. Algorithms 34 2003 303 311 (Pubitemid 39063573)
    • (2003) Numerical Algorithms , vol.34 , Issue.2-4 , pp. 303-311
    • Dubois, F.1    Mengue, S.2
  • 18
    • 33644585616 scopus 로고    scopus 로고
    • Numerical solution of semidifferential equations by collocation method
    • E. Rawashdeh Numerical solution of semidifferential equations by collocation method Appl. Math. Comput. 174 2006 869 876
    • (2006) Appl. Math. Comput. , vol.174 , pp. 869-876
    • Rawashdeh, E.1
  • 19
    • 77950362487 scopus 로고    scopus 로고
    • A numerical method for solution of semidifferential equations
    • M.H. Hamarsheh, and E.A. Rawashdeh A numerical method for solution of semidifferential equations Mat. Vesnik 62 2010 117 126
    • (2010) Mat. Vesnik , vol.62 , pp. 117-126
    • Hamarsheh, M.H.1    Rawashdeh, E.A.2
  • 20
    • 67649224114 scopus 로고    scopus 로고
    • Solving fractional integral equations by the Haar wavelet method
    • Lepik Solving fractional integral equations by the Haar wavelet method Appl. Math. Comput. 214 2009 468 478
    • (2009) Appl. Math. Comput. , vol.214 , pp. 468-478
    • Lepik1
  • 21
    • 33746794772 scopus 로고    scopus 로고
    • Superconvergence in the maximum norm of a class of piecewise polynomial collocation methods for solving linear weakly singular Volterra integro-differential equations
    • R. Kangro, and I. Parts Superconvergence in the maximum norm of a class of piecewise polynomial collocation methods for solving linear weakly singular Volterra integro-differential equations J. Integral Equations Appl. 15 2003 403 427
    • (2003) J. Integral Equations Appl. , vol.15 , pp. 403-427
    • Kangro, R.1    Parts, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.