메뉴 건너뛰기




Volumn 2, Issue 1, 2013, Pages 55-70

An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment

Author keywords

Coagulation; Fractionation; Membrane filtration; Nanomaterials; Separation processes

Indexed keywords

BIOLOGY; COAGULATION; MICROFILTRATION; NANOSTRUCTURED MATERIALS; RISK ASSESSMENT; SIZE SEPARATION;

EID: 84878299127     PISSN: 09593330     EISSN: 1479487X     Source Type: Journal    
DOI: 10.1080/09593330.2013.788073     Document Type: Review
Times cited : (23)

References (145)
  • 5
    • 54149108375 scopus 로고    scopus 로고
    • Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications
    • Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400:396–414.
    • (2008) Sci Total Environ , vol.400 , pp. 396-414
    • Ju-Nam, Y.1    Lead, J.R.2
  • 7
  • 8
    • 85071745285 scopus 로고    scopus 로고
    • Nanostructures and nanomaterials-synthesis, properties and applications
    • Cao G. Nanostructures and nanomaterials-synthesis, properties and applications. Singapore: World Scientific; 2004.
    • (2004) Singapore: World Scientific
    • Cao, G.1
  • 11
    • 73849121775 scopus 로고    scopus 로고
    • Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts
    • Brar SK, Verma M, Tyagi RD, Surampalli RY. Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts. Waste Manage. 2010;30:504–520.
    • (2010) Waste Manage , vol.30 , pp. 504-520
    • Brar, S.K.1    Verma, M.2    Tyagi, R.D.3    Surampalli, R.Y.4
  • 12
    • 3543146722 scopus 로고    scopus 로고
    • Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass
    • Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004;112:1058–1062.
    • (2004) Environ. Health Perspect. , vol.112 , pp. 1058-1062
    • Oberdörster, E.1
  • 13
    • 71849098404 scopus 로고    scopus 로고
    • 2 nanoparticle aggregates in Daphnia magna
    • Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 2010;78:209–215.
    • (2010) Chemosphere , vol.78 , pp. 209-215
    • Zhu, X.1    Chang, Y.2    Chen, Y.3
  • 14
    • 35348852487 scopus 로고    scopus 로고
    • Occurrence, behavior and effects of nanoparticles in the environment
    • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150:5–22.
    • (2007) Environ Pollut , vol.150 , pp. 5-22
    • Nowack, B.1    Bucheli, T.D.2
  • 15
    • 79952250594 scopus 로고    scopus 로고
    • Analytical chemistry of metallic nanoparticles in natural environments
    • Silva BFd, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barcel D
    • Silva BFd, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barcel D. Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem. 2011;30: 528–540.
    • (2011) Trends Anal Chem , vol.30 , pp. 528-540
  • 17
    • 70350747587 scopus 로고    scopus 로고
    • The behavior of silver nanotextiles during washing
    • Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ Sci Technol. 2009;43:8113–8118.
    • (2009) Environ Sci Technol , vol.43 , pp. 8113-8118
    • Geranio, L.1    Heuberger, M.2    Nowack, B.3
  • 19
    • 60949103811 scopus 로고    scopus 로고
    • Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments
    • Koelmans AA, Nowack B, Wiesner MR. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ Pollut. 2009;157:1110–1116.
    • (2009) Environ Pollut , vol.157 , pp. 1110-1116
    • Koelmans, A.A.1    Nowack, B.2    Wiesner, M.R.3
  • 23
    • 79955639965 scopus 로고    scopus 로고
    • 2 nanomaterials
    • Westerhoff P, Song GX, Hristovski K, Kiser MA. Occurrence and removal of titanium at full scale wastewater treatment plants: implications forTiO2 nanomaterials. J Environ Monit. 2011;13:1195–1203.
    • (2011) J Environ Monit , vol.13 , pp. 1195-1203
    • Westerhoff, P.1    Song, G.X.2    Hristovski, K.3    Kiser, M.A.4
  • 24
    • 72849144722 scopus 로고    scopus 로고
    • 2, ZnO, Ag, CNT, Fullerenes) for different regions
    • Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol. 2009;43:9216–9222.
    • (2009) Environ Sci Technol , vol.43 , pp. 9216-9222
    • Gottschalk, F.1    Sonderer, T.2    Scholz, R.W.3    Nowack, B.4
  • 25
    • 44949247432 scopus 로고    scopus 로고
    • Exposure modeling of engineered nanoparticles in the environment
    • Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42:4447–4453.
    • (2008) Environ Sci Technol , vol.42 , pp. 4447-4453
    • Mueller, N.C.1    Nowack, B.2
  • 26
    • 79953862784 scopus 로고    scopus 로고
    • Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: Occurrence and sources of titanium nanomaterials in surface sediments fromXiamen Bay, China
    • Luo Z, Wang Z, Li Q, Pan Q, Yan C, Liu F. Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: occurrence and sources of titanium nanomaterials in surface sediments fromXiamen Bay, China. J Environ Monit. 2011;13:1046–1052.
    • (2011) J Environ Monit , vol.13 , pp. 1046-1052
    • Luo, Z.1    Wang, Z.2    Li, Q.3    Pan, Q.4    Yan, C.5    Liu, F.6
  • 28
    • 79952624107 scopus 로고    scopus 로고
    • Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention
    • Neal C, Jarvie H, Rowland P, Lawler A, Sleep D, Scholefield P. Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci Total Environ. 2011;409:1843–1853.
    • (2011) Sci Total Environ , vol.409 , pp. 1843-1853
    • Neal, C.1    Jarvie, H.2    Rowland, P.3    Lawler, A.4    Sleep, D.5    Scholefield, P.6
  • 31
    • 78650235821 scopus 로고    scopus 로고
    • Evaluating engineered nanoparticles in natural waters
    • Weinberg H, Galyean A, Leopold M. Evaluating engineered nanoparticles in natural waters. Trends Anal Chem. 2011;30:72–83.
    • (2011) Trends Anal Chem , vol.30 , pp. 72-83
    • Weinberg, H.1    Galyean, A.2    Leopold, M.3
  • 32
    • 78650783860 scopus 로고    scopus 로고
    • Fate and transport of engineered nanomaterials in the environment
    • Lin D, Tian X, Wu F, Xing B. Fate and transport of engineered nanomaterials in the environment. J Environ Monit. 2010;39:1896–1908.
    • (2010) J Environ Monit , vol.39 , pp. 1896-1908
    • Lin, D.1    Tian, X.2    Wu, F.3    Xing, B.4
  • 33
    • 77956083468 scopus 로고    scopus 로고
    • Stability of nanoparticles in water
    • Labille J, Brant J. Stability of nanoparticles in water. Nanomedicine. 2010;5:985–998.
    • (2010) Nanomedicine , vol.5 , pp. 985-998
    • Labille, J.1    Brant, J.2
  • 34
    • 77950431308 scopus 로고    scopus 로고
    • Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment
    • Labille J, Feng JH, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero J. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut. 2010;158:3482–3489.
    • (2010) Environ Pollut , vol.158 , pp. 3482-3489
    • Labille, J.1    Feng, J.H.2    Botta, C.3    Borschneck, D.4    Sammut, M.5    Cabie, M.6    Auffan, M.7    Rose, J.8    Bottero, J.9
  • 36
    • 77957700453 scopus 로고    scopus 로고
    • Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing
    • von der Kammer F, Ottofuelling S, Hofmann T. Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ Pollut. 2010;158:3472–3481.
    • (2010) Environ Pollut , vol.158 , pp. 3472-3481
    • Von Der Kammer, F.1    Ottofuelling, S.2    Hofmann, T.3
  • 37
    • 44449095322 scopus 로고    scopus 로고
    • Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter
    • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ Toxicol Chem. 2008;27:1875–1882.
    • (2008) Environ Toxicol Chem , vol.27 , pp. 1875-1882
    • Baalousha, M.1    Manciulea, A.2    Cumberland, S.3    Kendall, K.4    Lead, J.R.5
  • 39
    • 69949090482 scopus 로고    scopus 로고
    • Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles
    • Zhang Y, Chen Y, Westerhoff P, Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009;43:4249–4257.
    • (2009) Water Res , vol.43 , pp. 4249-4257
    • Zhang, Y.1    Chen, Y.2    Westerhoff, P.3    Crittenden, J.4
  • 40
    • 46549086628 scopus 로고    scopus 로고
    • Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules
    • Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008;402:51–61.
    • (2008) Sci. Total Environ , vol.402 , pp. 51-61
    • Diegoli, S.1    Manciulea, A.L.2    Begum, S.3    Jones, I.P.4    Lead, J.R.5    Preece, J.A.6
  • 41
    • 77954383069 scopus 로고    scopus 로고
    • Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes
    • Buettner KM, Rinciog CI, Mylon SE. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloid Surf A. 2010;366:74–79.
    • (2010) Colloid Surf A , vol.366 , pp. 74-79
    • Buettner, K.M.1    Rinciog, C.I.2    Mylon, S.E.3
  • 42
    • 84863031421 scopus 로고    scopus 로고
    • Silica nanoparticle separation from water by aggregation with AlCl3
    • Liu Y, Tourbin M, Lachaize S, Guiraud P. Silica nanoparticle separation from water by aggregation with AlCl3. Ind Eng Chem Res. 2012;51:1853–1863.
    • (2012) Ind Eng Chem Res , vol.51 , pp. 1853-1863
    • Liu, Y.1    Tourbin, M.2    Lachaize, S.3    Guiraud, P.4
  • 43
    • 77950925741 scopus 로고    scopus 로고
    • Role of morphology in the aggregation kinetics of ZnO nanoparticles
    • Zhou D, Keller AA. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 2010;44:2948–2956.
    • (2010) Water Res , vol.44 , pp. 2948-2956
    • Zhou, D.1    Keller, A.A.2
  • 46
    • 77955888452 scopus 로고    scopus 로고
    • Nano-scale pollutants: Fate in Irish surface and drinking water regulatory systems
    • O’Brien N, Cummins E. Nano-scale pollutants: Fate in Irish surface and drinking water regulatory systems. Hum Ecol Risk Assess. 2010;16:847–872.
    • (2010) Hum Ecol Risk Assess , vol.16 , pp. 847-872
    • O’Brien, N.1    Cummins, E.2
  • 48
    • 65449177971 scopus 로고    scopus 로고
    • Dispersion of C60 in natural water and removal by conventional drinking water treatment processes
    • Hyung H, Kim JH. Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 2009;43:2463–2470.
    • (2009) Water Res , vol.43 , pp. 2463-2470
    • Hyung, H.1    Kim, J.H.2
  • 49
    • 77954215460 scopus 로고    scopus 로고
    • Biosorption of nanoparticles to heterotrophic wastewater biomass
    • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res. 2010;44:4105–4114.
    • (2010) Water Res , vol.44 , pp. 4105-4114
    • Kiser, M.A.1    Ryu, H.2    Jang, H.3    Hristovski, K.4    Westerhoff, P.5
  • 52
    • 35348845842 scopus 로고    scopus 로고
    • Nanoparticles in wastewater from a science-based industrial park-Coagulation using polyaluminum chloride
    • Chang MR, Lee DJ, Lai JY. Nanoparticles in wastewater from a science-based industrial park-Coagulation using polyaluminum chloride. J Environ Manage. 2007;85:1009–1014.
    • (2007) J Environ Manage , vol.85 , pp. 1009-1014
    • Chang, M.R.1    Lee, D.J.2    Lai, J.Y.3
  • 53
    • 33846908132 scopus 로고    scopus 로고
    • Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park
    • Chuang SH, Chang TC, Ouyang CF, Leu JM. Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park. Water Sci Technol. 2007;55:187–195.
    • (2007) Water Sci Technol , vol.55 , pp. 187-195
    • Chuang, S.H.1    Chang, T.C.2    Ouyang, C.F.3    Leu, J.M.4
  • 57
    • 77249110802 scopus 로고    scopus 로고
    • Impact of source water quality on multiwall carbon nanotube coagulation
    • Holbrook RD, Kline CN, Filliben JJ. Impact of source water quality on multiwall carbon nanotube coagulation. Environ Sci Technol. 2010;44:1386–1391.
    • (2010) Environ Sci Technol , vol.44 , pp. 1386-1391
    • Holbrook, R.D.1    Kline, C.N.2    Filliben, J.J.3
  • 58
    • 84864966491 scopus 로고    scopus 로고
    • Removal of dispersantstabilized carbon nanotubes by regular coagulants
    • Liu N, Liu C, Zhang J, Lin D. Removal of dispersantstabilized carbon nanotubes by regular coagulants. J Environ Sci. 2012;24:1364–1370.
    • (2012) J Environ Sci , vol.24 , pp. 1364-1370
    • Liu, N.1    Liu, C.2    Zhang, J.3    Lin, D.4
  • 59
  • 60
    • 12844283955 scopus 로고    scopus 로고
    • Electrocoagulation for removal of silica nano-particles from chemical-mechanical-planarization wastewater
    • Den W, Huang C. Electrocoagulation for removal of silica nano-particles from chemical-mechanical-planarization wastewater. Colloid Surf A. 2005;254:81–89.
    • (2005) Colloid Surf A , vol.254 , pp. 81-89
    • Den, W.1    Huang, C.2
  • 61
    • 16344366002 scopus 로고    scopus 로고
    • Treating chemical mechanical polishing (CMP) wastewater by electrocoagulation-flotation process with surfactant
    • Hu CY, Lo SL, Li CM, Kuan WH. Treating chemical mechanical polishing (CMP) wastewater by electrocoagulation-flotation process with surfactant. J Hazard Mater. 2005;120:15–20.
    • (2005) J Hazard Mater , vol.120 , pp. 15-20
    • Hu, C.Y.1    Lo, S.L.2    Li, C.M.3    Kuan, W.H.4
  • 62
    • 33744517918 scopus 로고    scopus 로고
    • Mechanistic study on the continuous flow electrocoagulation of silica nanoparticles from polishing wastewater
    • Den W, Huang C, Ke HC. Mechanistic study on the continuous flow electrocoagulation of silica nanoparticles from polishing wastewater. Ind Eng Chem Res. 2006;45:3644–3651.
    • (2006) Ind Eng Chem Res , vol.45 , pp. 3644-3651
    • Den, W.1    Huang, C.2    Ke, H.C.3
  • 63
    • 0032821117 scopus 로고    scopus 로고
    • Precipitate flotation of fluoridecontaining wastewater from a semiconductor manufacturer
    • Huang CJ, Liu JC. Precipitate flotation of fluoridecontaining wastewater from a semiconductor manufacturer. Water Res. 1999;33:3403–3412.
    • (1999) Water Res , vol.33 , pp. 3403-3412
    • Huang, C.J.1    Liu, J.C.2
  • 64
    • 35349023324 scopus 로고    scopus 로고
    • Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater
    • Tsai JC, Kumar M, Chen SY, Lin JG. Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Sep Purif Technol. 2007;58:61–67.
    • (2007) Sep Purif Technol , vol.58 , pp. 61-67
    • Tsai, J.C.1    Kumar, M.2    Chen, S.Y.3    Lin, J.G.4
  • 65
    • 0029054856 scopus 로고
    • Principles and applications of dissolved air flotation
    • Edzwald JK. Principles and applications of dissolved air flotation. Water Sci Technol. 1995;31:1–23.
    • (1995) Water Sci Technol , vol.31 , pp. 1-23
    • Edzwald, J.K.1
  • 66
    • 31444446123 scopus 로고    scopus 로고
    • Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation
    • Lien CY, Liu JC. Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation. J Environ Eng. 2006;132:51–57.
    • (2006) J Environ Eng , vol.132 , pp. 51-57
    • Lien, C.Y.1    Liu, J.C.2
  • 67
    • 4143112256 scopus 로고    scopus 로고
    • Velocity effects on fullerene and oxide nanoparticle deposition in porous media
    • Lecoanet HF, Wiesner MR. Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol. 2004;38:4377–4382.
    • (2004) Environ Sci Technol , vol.38 , pp. 4377-4382
    • Lecoanet, H.F.1    Wiesner, M.R.2
  • 70
    • 4944234013 scopus 로고    scopus 로고
    • Laboratory assessment of the mobility of nanomaterials in porous media
    • Lecoanet HF, Bottero JY, Wiesner MR. Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol. 2004;38:5164–5169.
    • (2004) Environ Sci Technol , vol.38 , pp. 5164-5169
    • Lecoanet, H.F.1    Bottero, J.Y.2    Wiesner, M.R.3
  • 71
    • 84863546255 scopus 로고    scopus 로고
    • Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length
    • Wang Y, Kim J, Baek J, Miller G, Pennell K. Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. Water Res. 2012;46:4521–4531.
    • (2012) Water Res , vol.46 , pp. 4521-4531
    • Wang, Y.1    Kim, J.2    Baek, J.3    Miller, G.4    Pennell, K.5
  • 73
    • 24144489721 scopus 로고    scopus 로고
    • Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems
    • Brant J, Lecoanet H, Wiesner MR. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res. 2005;7:545–553.
    • (2005) J Nanopart Res , vol.7 , pp. 545-553
    • Brant, J.1    Lecoanet, H.2    Wiesner, M.R.3
  • 74
    • 65449138800 scopus 로고    scopus 로고
    • Reverse osmosis desalination: Water sources, technology, and today’s challenges
    • Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009;43:2317–2348.
    • (2009) Water Res , vol.43 , pp. 2317-2348
    • Greenlee, L.F.1    Lawler, D.F.2    Freeman, B.D.3    Marrot, B.4    Moulin, P.5
  • 75
    • 83255194063 scopus 로고    scopus 로고
    • Development of a three-stage system for the treatment and reclamation of wastewater containing nano-scale particles
    • Yang BM, Huang CJ, Lai WL, Chang CC, Kao CM. Development of a three-stage system for the treatment and reclamation of wastewater containing nano-scale particles. Desalination. 2012;284:182–190.
    • (2012) Desalination , vol.284 , pp. 182-190
    • Yang, B.M.1    Huang, C.J.2    Lai, W.L.3    Chang, C.C.4    Kao, C.M.5
  • 78
    • 84862785391 scopus 로고    scopus 로고
    • Membrane vis-LED photoreactor for simultaneous penicillinGdegradation and TiO2 separation
    • Wang P, Lim TT. Membrane vis-LED photoreactor for simultaneous penicillinGdegradation and TiO2 separation. Water Res. 2012;46:1825–1837.
    • (2012) Water Res , vol.46 , pp. 1825-1837
    • Wang, P.1    Lim, T.T.2
  • 79
    • 27644505080 scopus 로고    scopus 로고
    • Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: Evaluation of pretreatment methods
    • Pan JR, Huang C, Jiang W, Chen C. Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods. Desalination. 2005;179:31–40.
    • (2005) Desalination , vol.179 , pp. 31-40
    • Pan, J.R.1    Huang, C.2    Jiang, W.3    Chen, C.4
  • 80
    • 13444261931 scopus 로고    scopus 로고
    • Nano silica removal from IC wastewater by pre-coagulation and microfiltration
    • Huang C, Jiang W, Chen C. Nano silica removal from IC wastewater by pre-coagulation and microfiltration. Water Sci Technol. 2004;50:133–138.
    • (2004) Water Sci Technol , vol.50 , pp. 133-138
    • Huang, C.1    Jiang, W.2    Chen, C.3
  • 81
    • 76849094281 scopus 로고    scopus 로고
    • Application of magnetic nanoparticles for UF membrane integrity monitoring at low-pressure operation
    • Guo H, Wyart Y, Perot J, Nauleau F, Moulin P. Application of magnetic nanoparticles for UF membrane integrity monitoring at low-pressure operation. J Membr Sci. 2010;350:172–179.
    • (2010) J Membr Sci , vol.350 , pp. 172-179
    • Guo, H.1    Wyart, Y.2    Perot, J.3    Nauleau, F.4    Moulin, P.5
  • 82
    • 0035804565 scopus 로고    scopus 로고
    • Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment
    • Lee SA, Choo KH, Lee CH, Lee HI, Hyeon T, Choi W, Kwon HH. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Ind Eng Chem Res. 2001;40:1712–1719.
    • (2001) Ind Eng Chem Res , vol.40 , pp. 1712-1719
    • Lee, S.A.1    Choo, K.H.2    Lee, C.H.3    Lee, H.I.4    Hyeon, T.5    Choi, W.6    Kwon, H.H.7
  • 83
    • 78650519506 scopus 로고    scopus 로고
    • Crossflow filtration of nanosized catalysts suspension using ceramic membranes
    • Zhong Z, Li W, Xing W, Xu N. Crossflow filtration of nanosized catalysts suspension using ceramic membranes. Sep Purif Technol. 2011;76:223–230.
    • (2011) Sep Purif Technol. , vol.76 , pp. 223-230
    • Zhong, Z.1    Li, W.2    Xing, W.3    Xu, N.4
  • 85
    • 43049089680 scopus 로고    scopus 로고
    • Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD
    • Kaegi R, Wagner T, Hetzer B, Sinnet B, Tzvetkov G, Boller M. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Water Res. 2008;42:2778–2786.
    • (2008) Water Res , vol.42 , pp. 2778-2786
    • Kaegi, R.1    Wagner, T.2    Hetzer, B.3    Sinnet, B.4    Tzvetkov, G.5    Boller, M.6
  • 86
    • 77952422133 scopus 로고    scopus 로고
    • Membrane filtration of fullerene nanoparticle suspensions: Effects of derivatization, pressure, electrolyte species and concentration
    • Jassby D, Chae SR, Hendren Z, Wiesner M. Membrane filtration of fullerene nanoparticle suspensions: Effects of derivatization, pressure, electrolyte species and concentration. J Colloid Interface Sci. 2010;346: 296–302.
    • (2010) J Colloid Interface Sci , vol.346 , pp. 296-302
    • Jassby, D.1    Chae, S.R.2    Hendren, Z.3    Wiesner, M.4
  • 87
    • 84874722464 scopus 로고    scopus 로고
    • 2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism
    • Springer F, Laborie S, Guigui C. Removal of SiO2 nanoparticles from industry wastewaters and subsurface waters by ultrafiltration: investigation of process efficiency, deposit properties and fouling mechanism. Sep Purif Technol. 2013;108:6–14.
    • (2013) Sep Purif Technol , vol.108 , pp. 6-14
    • Springer, F.1    Laborie, S.2    Guigui, C.3
  • 89
    • 16244362762 scopus 로고    scopus 로고
    • Size fractionation of metal nanoparticles by membrane filtration
    • Akthakul A, Hochbaum AI, Stellacci F, Mayes AM. Size fractionation of metal nanoparticles by membrane filtration. Adv Mater. 2005;17:532–535.
    • (2005) Adv Mater , vol.17 , pp. 532-535
    • Akthakul, A.1    Hochbaum, A.I.2    Stellacci, F.3    Mayes, A.M.4
  • 90
    • 0036151681 scopus 로고    scopus 로고
    • Additional techniques to improve microfiltration
    • Wakeman RJ, Williams CJ. Additional techniques to improve microfiltration. Sep Purif Technol. 2002;26: 3–18.
    • (2002) Sep Purif Technol , vol.26 , pp. 3-18
    • Wakeman, R.J.1    Williams, C.J.2
  • 91
    • 0033053665 scopus 로고    scopus 로고
    • Crossflow electrofiltration in pilot scale
    • Weigert T, Altmann J, Ripperger S. Crossflow electrofiltration in pilot scale. J. Membr. Sci. 1999;159:253–262.
    • (1999) J. Membr. Sci , vol.159 , pp. 253-262
    • Weigert, T.1    Altmann, J.2    Ripperger, S.3
  • 92
    • 0020818702 scopus 로고
    • Separation of colloidal particles from nonaqueous media by cross-flow electrofiltration
    • Lo YS, Gidaspow D, Wasan DT. Separation of colloidal particles from nonaqueous media by cross-flow electrofiltration. Sep. Sci. Technol. 1983;18:1323–1349.
    • (1983) Sep. Sci. Technol , vol.18 , pp. 1323-1349
    • Lo, Y.S.1    Gidaspow, D.2    Wasan, D.T.3
  • 93
    • 35348940304 scopus 로고    scopus 로고
    • Separation of nano-sized colloidal particles using cross-flow electro-filtration
    • Lin YT, Sung M, Sanders PF, Marinucci A, Huang CP. Separation of nano-sized colloidal particles using cross-flow electro-filtration. Sep Purif Technol. 2007;58:138–147.
    • (2007) Sep Purif Technol , vol.58 , pp. 138-147
    • Lin, Y.T.1    Sung, M.2    Sanders, P.F.3    Marinucci, A.4    Huang, C.P.5
  • 94
    • 33846854015 scopus 로고    scopus 로고
    • Enhancing the separation of nano-sized particles in low-salt suspensions by electrically assisted cross-flow filtration
    • Sung M, Huang CP, Weng YH, Lin YT, Li KC. Enhancing the separation of nano-sized particles in low-salt suspensions by electrically assisted cross-flow filtration. Sep Purif Technol. 2007;54:170–177.
    • (2007) Sep Purif Technol , vol.54 , pp. 170-177
    • Sung, M.1    Huang, C.P.2    Weng, Y.H.3    Lin, Y.T.4    Li, K.C.5
  • 95
    • 35349019403 scopus 로고    scopus 로고
    • Electrofiltration of silica nanoparticlecontaining wastewater using tubular ceramic membranes
    • Yang GCC, Li CJ. Electrofiltration of silica nanoparticlecontaining wastewater using tubular ceramic membranes. Sep Purif Technol. 2007;58:159–165.
    • (2007) Sep Purif Technol , vol.58 , pp. 159-165
    • Yang, G.1    Li, C.J.2
  • 96
    • 0037296248 scopus 로고    scopus 로고
    • Crossflow electromicrofiltration of oxide-CMP wastewater
    • Yang GCC, Yang TY, Tsai SH. Crossflow electromicrofiltration of oxide-CMP wastewater. Water Res. 2003;37:785–792.
    • (2003) Water Res , vol.37 , pp. 785-792
    • Yang, G.1    Yang, T.Y.2    Tsai, S.H.3
  • 97
    • 1842480519 scopus 로고    scopus 로고
    • Reclamation of high quality water from treating CMP wastewater by a novel crossflow electrofiltration/electrodialysis process
    • Yang GCC, Yang TY. Reclamation of high quality water from treating CMP wastewater by a novel crossflow electrofiltration/electrodialysis process. J Membr Sci. 2004;233:151–159.
    • (2004) J Membr Sci , vol.233 , pp. 151-159
    • Yang, G.1    Yang, T.Y.2
  • 98
    • 33751162646 scopus 로고    scopus 로고
    • Performance evaluation of a simultaneous electrocoagulation and electrofiltration module for the treatment of Cu-CMP and oxide-CMP wastewaters
    • Yang GCC, Tsai CM. Performance evaluation of a simultaneous electrocoagulation and electrofiltration module for the treatment of Cu-CMP and oxide-CMP wastewaters. J Membr Sci. 2006;286:36–44.
    • (2006) J Membr Sci , vol.286 , pp. 36-44
    • Yang, G.1    Tsai, C.M.2
  • 99
    • 31844435262 scopus 로고    scopus 로고
    • 2-containing wastewater by simultaneous electrocoagulation/ electrofiltration. Water Sci
    • Yang GCC, Chuang CC. Treatment of nanosized TiO2-containing wastewater by simultaneous electrocoagulation/ electrofiltration. Water Sci. Technol. 2005;52: 377–381.
    • (2005) Technol , vol.52 , pp. 377-381
    • Yang, G.1
  • 100
    • 0345633592 scopus 로고    scopus 로고
    • Crossflow membrane filtration enhanced by an external DC electric field: A review
    • Huotari HM, Trägårdh G, Huisman IH. Crossflow membrane filtration enhanced by an external DC electric field: a review. Chem Eng Res Des. 1999;77:461–468.
    • (1999) Chem Eng Res Des , vol.77 , pp. 461-468
    • Huotari, H.M.1    Trägårdh, G.2    Huisman, I.H.3
  • 101
    • 79955581614 scopus 로고    scopus 로고
    • Origin, separation and identification of environmental nanoparticles: A review
    • Tsao TM, Chen YM, Wang MK. Origin, separation and identification of environmental nanoparticles: a review. J Environ Monit. 2011;13:1156–1163.
    • (2011) J Environ Monit , vol.13 , pp. 1156-1163
    • Tsao, T.M.1    Chen, Y.M.2    Wang, M.K.3
  • 102
    • 33748782228 scopus 로고    scopus 로고
    • Crossflow membrane filtration of interacting nanoparticle suspensions
    • Kim S, Marion M, Jeong BH, Hoek EMV. Crossflow membrane filtration of interacting nanoparticle suspensions. J Membr Sci. 2006;284:361–372.
    • (2006) J Membr Sci , vol.284 , pp. 361-372
    • Kim, S.1    Marion, M.2    Jeong, B.H.3    Hoek, E.M.V.4
  • 103
    • 80955177677 scopus 로고    scopus 로고
    • Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study
    • Huang CJ, Yang BM, Chen KS, Chang CC, Kao CM. Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desalination. 2011;278:203–210.
    • (2011) Desalination , vol.278 , pp. 203-210
    • Huang, C.J.1    Yang, B.M.2    Chen, K.S.3    Chang, C.C.4    Kao, C.M.5
  • 104
    • 48749125562 scopus 로고    scopus 로고
    • Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency
    • Limbach LK, Bereiter R, Mueller E, Krebs R, Gaelli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol. 2008;42:5828–5833.
    • (2008) Environ Sci Technol , vol.42 , pp. 5828-5833
    • Limbach, L.K.1    Bereiter, R.2    Mueller, E.3    Krebs, R.4    Gaelli, R.5    Stark, W.J.6
  • 105
    • 78650771372 scopus 로고    scopus 로고
    • Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm
    • Morrow JB, Arango C, Holbrook RD. Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm. J Environ Qual. 2010;39:1934–1941.
    • (2010) J Environ Qual , vol.39 , pp. 1934-1941
    • Morrow, J.B.1    Arango, C.2    Holbrook, R.D.3
  • 107
    • 77957358573 scopus 로고    scopus 로고
    • Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products
    • Kim B, Park CS, Murayama M, Hochella MF. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol. 2010;44:7509–7514.
    • (2010) Environ Sci Technol , vol.44 , pp. 7509-7514
    • Kim, B.1    Park, C.S.2    Murayama, M.3    Hochella, M.F.4
  • 108
    • 77953822054 scopus 로고    scopus 로고
    • Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge
    • Tiede K, Boxall ABA, Wang XM, Gore D, Tiede D, Baxter M, David H, Tear SP, Lewis J. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J Anal At Spectrom. 2010;25:1149–1154.
    • (2010) J Anal at Spectrom , vol.25 , pp. 1149-1154
    • Tiede, K.1    Boxall, A.2    Wang, X.M.3    Gore, D.4    Tiede, D.5    Baxter, M.6    David, H.7    Tear, S.P.8    Lewis, J.9
  • 109
    • 79952706995 scopus 로고    scopus 로고
    • Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles
    • Kowalczyk B, Lagzi I, Grzybowski BA. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid Interface Sci. 2011;16:135–148.
    • (2011) Curr Opin Colloid Interface Sci , vol.16 , pp. 135-148
    • Kowalczyk, B.1    Lagzi, I.2    Grzybowski, B.A.3
  • 110
    • 33646518546 scopus 로고    scopus 로고
    • Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation
    • Chin CJM, Chen PW, Wang LJ. Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere. 2006;63:1809–1813.
    • (2006) Chemosphere , vol.63 , pp. 1809-1813
    • Chin, C.1    Chen, P.W.2    Wang, L.J.3
  • 111
    • 80555150574 scopus 로고    scopus 로고
    • Using magnetic seeds to improve the aggregation and precipitation of nanoparticles from backside grinding wastewater
    • Wan TJ, Shen SM, Siao SH, Huang CF, Cheng CY. Using magnetic seeds to improve the aggregation and precipitation of nanoparticles from backside grinding wastewater. Water Res. 2011;45:6301–6307.
    • (2011) Water Res , vol.45 , pp. 6301-6307
    • Wan, T.J.1    Shen, S.M.2    Siao, S.H.3    Huang, C.F.4    Cheng, C.Y.5
  • 112
    • 46349107675 scopus 로고    scopus 로고
    • Detection and characterization of engineered nanoparticles in food and the environment
    • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam. 2008;25:795–821.
    • (2008) Food Addit Contam , vol.25 , pp. 795-821
    • Tiede, K.1    Boxall, A.2    Tear, S.P.3    Lewis, J.4    David, H.5    Hassellov, M.6
  • 113
    • 44449136482 scopus 로고    scopus 로고
    • Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles
    • Hassellöv M, Readman JW, Ranville JF, Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 2008;17:344–361.
    • (2008) Ecotoxicology , vol.17 , pp. 344-361
    • Hassellöv, M.1    Readman, J.W.2    Ranville, J.F.3    Tiede, K.4
  • 114
    • 33745897297 scopus 로고    scopus 로고
    • Aquatic colloids and nanoparticles: Current knowledge and future trends
    • Lead JR, Wilkinson KJ. Aquatic colloids and nanoparticles: Current knowledge and future trends. Environ Chem. 2006;3:159–171.
    • (2006) Environ Chem , vol.3 , pp. 159-171
    • Lead, J.R.1    Wilkinson, K.J.2
  • 115
    • 80052065375 scopus 로고    scopus 로고
    • Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products
    • Krystek P, Ulrich A, Garcia CC, Manohar S, Ritsema R. Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products. J Anal At Spectrom. 2011;26:1701–1721.
    • (2011) J Anal at Spectrom , vol.26 , pp. 1701-1721
    • Krystek, P.1    Ulrich, A.2    Garcia, C.C.3    Manohar, S.4    Ritsema, R.5
  • 117
    • 33644944819 scopus 로고    scopus 로고
    • Rapid purification and size separation of gold nanoparticles via diafiltration
    • Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc. 2006;128:3190–3197.
    • (2006) J am Chem Soc , vol.128 , pp. 3190-3197
    • Sweeney, S.F.1    Woehrle, G.H.2    Hutchison, J.E.3
  • 118
    • 72449164915 scopus 로고    scopus 로고
    • Automated ultrafiltration device for efficient collection of environmental nanoparticles from aqueous suspensions
    • Tsao TM, Wang MK, Huang PM. Automated ultrafiltration device for efficient collection of environmental nanoparticles from aqueous suspensions. Soil Sci Soc Am J. 2009;73:1808–1816.
    • (2009) Soil Sci Soc am J , vol.73 , pp. 1808-1816
    • Tsao, T.M.1    Wang, M.K.2    Huang, P.M.3
  • 119
    • 4444284498 scopus 로고    scopus 로고
    • Size fractionation of aquatic colloids and particles by cross-flow filtration: Analysis by scanning electron and atomic force microscopy
    • Doucet FJ, Maguire L, Lead JR. Size fractionation of aquatic colloids and particles by cross-flow filtration: analysis by scanning electron and atomic force microscopy. Anal Chim Acta. 2004;522:59–71.
    • (2004) Anal Chim Acta , vol.522 , pp. 59-71
    • Doucet, F.J.1    Maguire, L.2    Lead, J.R.3
  • 120
    • 77950944240 scopus 로고    scopus 로고
    • Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary
    • Pokrovsky OS, Viers J, Shirokova LS, Shevchenko VP, Filipov AS, Dupr B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem Geol. 2010;273:136–149.
    • (2010) Chem Geol , vol.273 , pp. 136-149
    • Pokrovsky, O.S.1    Viers, J.2    Shirokova, L.S.3    Shevchenko, V.P.4    Filipov, A.S.5    Dupr, B.6
  • 121
    • 75449085492 scopus 로고    scopus 로고
    • The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China
    • Ren H, Liu H, Qu J, Berg M, Qi W, Xu W. The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China. Chemosphere. 2010;78:360–367.
    • (2010) Chemosphere , vol.78 , pp. 360-367
    • Ren, H.1    Liu, H.2    Qu, J.3    Berg, M.4    Qi, W.5    Xu, W.6
  • 123
    • 0035884390 scopus 로고    scopus 로고
    • Filtration artifacts caused by overloading membrane filters
    • Morrison MA, Benoit G. Filtration artifacts caused by overloading membrane filters. Environ Sci Technol. 2001;35:3774–3779.
    • (2001) Environ Sci Technol , vol.35 , pp. 3774-3779
    • Morrison, M.A.1    Benoit, G.2
  • 124
    • 19444364780 scopus 로고    scopus 로고
    • Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system
    • Wilding A, Liu R, Zhou JL. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system. J Colloid Interface Sci. 2005;287:152–158.
    • (2005) J Colloid Interface Sci , vol.287 , pp. 152-158
    • Wilding, A.1    Liu, R.2    Zhou, J.L.3
  • 125
    • 33845922908 scopus 로고    scopus 로고
    • Application of cross-flow ultrafiltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters
    • Hassellöv M, Buesseler KO, Pike SM, Dai M. Application of cross-flow ultrafiltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters. Sci Total Environ. 2007;372:636–644.
    • (2007) Sci Total Environ , vol.372 , pp. 636-644
    • Hassellöv, M.1    Buesseler, K.O.2    Pike, S.M.3    Dai, M.4
  • 126
    • 21344434849 scopus 로고    scopus 로고
    • Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles
    • Doucet FJ, Maguire L, Lead JR. Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles. Talanta. 2005;67:144–154.
    • (2005) Talanta , vol.67 , pp. 144-154
    • Doucet, F.J.1    Maguire, L.2    Lead, J.R.3
  • 127
    • 0035102865 scopus 로고    scopus 로고
    • Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters
    • Guo L, Hunt BJ, Santschi PH. Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters. Water Res. 2001;35:1500–1508.
    • (2001) Water Res , vol.35 , pp. 1500-1508
    • Guo, L.1    Hunt, B.J.2    Santschi, P.H.3
  • 129
    • 0030294064 scopus 로고    scopus 로고
    • An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater
    • Wen LS, Stordal MC, Tang D, Gill GA, Santschi PH. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Mar Chem. 1996;55:129–152.
    • (1996) Mar Chem , vol.55 , pp. 129-152
    • Wen, L.S.1    Stordal, M.C.2    Tang, D.3    Gill, G.A.4    Santschi, P.H.5
  • 130
    • 71549163756 scopus 로고    scopus 로고
    • Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution
    • Worms IAM, Szigeti ZA, Dubascoux S, Lespes G, Traber J, Sigg L, Slaveykova VI. Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution. Water Res. 2010;44:340–350.
    • (2010) Water Res , vol.44 , pp. 340-350
    • Worms, I.1    Szigeti, Z.A.2    Dubascoux, S.3    Lespes, G.4    Traber, J.5    Sigg, L.6    Slaveykova, V.I.7
  • 131
    • 70649106977 scopus 로고    scopus 로고
    • Candaudap F.Trace elements in organic- and ironrich surficial fluids of the boreal zone: Assessing colloidal forms via dialysis and ultrafiltration
    • Vasyukova EV, Pokrovsky OS, Viers J, Oliva P, Dupré B, Martin F, Candaudap F.Trace elements in organic- and ironrich surficial fluids of the boreal zone: Assessing colloidal forms via dialysis and ultrafiltration. Geochim Cosmochim Ac. 2010;74:449–468.
    • (2010) Geochim Cosmochim Ac , vol.74 , pp. 449-468
    • Vasyukova, E.V.1    Pokrovsky, O.S.2    Viers, J.3    Oliva, P.4    Dupré, B.5    Martin, F.6
  • 133
    • 0033153395 scopus 로고    scopus 로고
    • Shape separation of nanometer gold particles by size-exclusion chromatography
    • Wei GT, Liu FK, Wang CRC. Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem. 1999;71:2085–2091.
    • (1999) Anal Chem , vol.71 , pp. 2085-2091
    • Wei, G.T.1    Liu, F.K.2    Wang, C.3
  • 134
    • 20444414575 scopus 로고    scopus 로고
    • Characterization of nanocrystalline CdSe by size exclusion chromatography
    • Krueger KM, Al-Somali AM, Falkner JC, Colvin VL. Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem. 2005;77:3511–3515.
    • (2005) Anal Chem , vol.77 , pp. 3511-3515
    • Krueger, K.M.1    Al-Somali, A.M.2    Falkner, J.C.3    Colvin, V.L.4
  • 135
    • 21844433732 scopus 로고    scopus 로고
    • Separation of carbon nanotubes by size exclusion chromatography
    • Duesberg GS, Burghard M, Muster J, Philipp G. Separation of carbon nanotubes by size exclusion chromatography. Chem Commun. 1998;435–436.
    • (1998) Chem Commun , pp. 435-436
    • Duesberg, G.S.1    Burghard, M.2    Muster, J.3    Philipp, G.4
  • 136
    • 67649354449 scopus 로고    scopus 로고
    • A robust size-characterisation methodology for studying nanoparticle behaviour in’real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS
    • Tiede K, Boxall ABA, Tiede D, Tear SP, David H, Lewis J. A robust size-characterisation methodology for studying nanoparticle behaviour in’real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J Anal At Spectrom. 2009;24:964–972.
    • (2009) J Anal at Spectrom , vol.24 , pp. 964-972
    • Tiede, K.1    Boxall, A.2    Tiede, D.3    Tear, S.P.4    David, H.5    Lewis, J.6
  • 137
    • 67649905026 scopus 로고    scopus 로고
    • Electrophoretic methods for separation of nanoparticles
    • Surugau N, Urban PL. Electrophoretic methods for separation of nanoparticles. J Sep Sci. 2009;32:1889–1906.
    • (2009) J Sep Sci , vol.32 , pp. 1889-1906
    • Surugau, N.1    Urban, P.L.2
  • 138
    • 0346786416 scopus 로고    scopus 로고
    • Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: A fundamental review
    • Rodriguez MA, Armstrong DW. Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. J Chromatogr B. 2004;800:7–25.
    • (2004) J Chromatogr B , vol.800 , pp. 7-25
    • Rodriguez, M.A.1    Armstrong, D.W.2
  • 140
    • 80955180110 scopus 로고    scopus 로고
    • Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review
    • Baalousha M, Stolpe B, Lead JR. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A. 2011;1218:4078–4103.
    • (2011) J Chromatogr A , vol.1218 , pp. 4078-4103
    • Baalousha, M.1    Stolpe, B.2    Lead, J.R.3
  • 141
    • 26844564656 scopus 로고    scopus 로고
    • Natural sample fractionation by F1FFF-MALLSTEM: Sample stabilization, preparation, pre-concentration and fractionation
    • Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P. Natural sample fractionation by F1FFF-MALLSTEM: Sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A. 2005;1093:156–166.
    • (2005) J Chromatogr A , vol.1093 , pp. 156-166
    • Baalousha, M.1    Kammer, F.2    Motelica-Heino, M.3    Le Coustumer, P.4
  • 142
    • 26844551970 scopus 로고    scopus 로고
    • Environmental applications of flow field-flow fractionation (FIFFF)
    • Gimbert LJ, Andrew KN, Haygarth PM, Worsfold PJ. Environmental applications of flow field-flow fractionation (FIFFF). Trends Anal Chem. 2003;22: 615–633.
    • (2003) Trends Anal Chem , vol.22 , pp. 615-633
    • Gimbert, L.J.1    Rew, K.N.2    Haygarth, P.M.3    Worsfold, P.J.4
  • 143
    • 34548414527 scopus 로고    scopus 로고
    • Size fractionation and characterization of natural aquatic colloids and nanoparticles
    • Baalousha M, Lead JR. Size fractionation and characterization of natural aquatic colloids and nanoparticles. Sci Total Environ. 2007;386:93–102.
    • (2007) Sci Total Environ , vol.386 , pp. 93-102
    • Baalousha, M.1    Lead, J.R.2
  • 144
    • 56749102805 scopus 로고    scopus 로고
    • Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles
    • Bouby M, Geckeis H, Geyer FW. Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Anal Bioanal Chem. 2008;392: 1447–1457.
    • (2008) Anal Bioanal Chem , vol.392 , pp. 1447-1457
    • Bouby, M.1    Geckeis, H.2    Geyer, F.W.3
  • 145
    • 79953282335 scopus 로고    scopus 로고
    • Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry
    • Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Koch CB, Larsen EH. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83: 2461–2468.
    • (2011) Anal Chem , vol.83 , pp. 2461-2468
    • Schmidt, B.1    Loeschner, K.2    Hadrup, N.3    Mortensen, A.4    Sloth, J.J.5    Koch, C.B.6    Larsen, E.H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.