-
1
-
-
0004042547
-
CRISP-DM 1.0: Step-by-step data mining guide
-
Technical report, SPSS, Inc
-
P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth. CRISP-DM 1.0: Step-by-step data mining guide. Technical report, SPSS, Inc., 2000.
-
(2000)
-
-
Chapman, P.1
Clinton, J.2
Kerber, R.3
Khabaza, T.4
Reinartz, T.5
Shearer, C.6
Wirth, R.7
-
2
-
-
85136029579
-
StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams
-
W. Fan. StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams. In Proc. of the 30th Intl. Conf. on Very Large Data Bases, pages 1257-1260, 2004.
-
(2004)
Proc. of the 30th Intl. Conf. on Very Large Data Bases
, pp. 1257-1260
-
-
Fan, W.1
-
6
-
-
0034499376
-
A note on the utility of incremental learning
-
C. Giraud-Carrier. A note on the utility of incremental learning. AI Communications, 13(4):215-223, 2000.
-
(2000)
AI Communications
, vol.13
, Issue.4
, pp. 215-223
-
-
Giraud-Carrier, C.1
-
9
-
-
33646504407
-
On the utility of incremental feature selection for the classification of textual data streams
-
Proc. of the 10th Panhellenic Conf. on Informatics
-
I. Katakis, G. Tsoumakas, and I. Vlahavas. On the utility of incremental feature selection for the classification of textual data streams. In Proc. of the 10th Panhellenic Conf. on Informatics, LNCS 3746, pages 338-348, 2005.
-
(2005)
LNCS
, vol.3746
, pp. 338-348
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
10
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 8(3):281-300, 2004.
-
(2004)
Intelligent Data Analysis
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
11
-
-
0001880210
-
KDD-Cup 2000 organizers' report: Peeling the onion
-
R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000 organizers' report: Peeling the onion. SIGKDD Explorations, 2(2):86-98, 2000.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.2
, pp. 86-98
-
-
Kohavi, R.1
Brodley, C.2
Frasca, B.3
Mason, L.4
Zheng, Z.5
-
13
-
-
0005907865
-
Priority ASOCS
-
T. Martinez, B. Hughes, and D. Campbell. Priority ASOCS. Journal of Artificial Neural Networks, 1(3):403-429, 1994.
-
(1994)
Journal of Artificial Neural Networks
, vol.1
, Issue.3
, pp. 403-429
-
-
Martinez, T.1
Hughes, B.2
Campbell, D.3
-
14
-
-
0010012318
-
Incremental learning from noisy data
-
J. C. Schlimmer and R. H. Granger, Jr. Incremental learning from noisy data. Machine Learning, 1(3):317-354, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.3
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger Jr., R.H.2
-
15
-
-
22544451786
-
Learning concept drift with a committee of decision trees
-
Technical report, Department of Computer Sciences, University of Texas at Austin, September
-
K.O.Stanley. Learning concept drift with a committee of decision trees. Technical report, Department of Computer Sciences, University of Texas at Austin, September 2003.
-
(2003)
-
-
Stanley, K.O.1
-
16
-
-
26444562687
-
The problem of concept drift: Definitions and related work
-
Technical report, Department of Computer Science Trinity College Dublin, Ireland, April
-
A. Tsymbal. The problem of concept drift: Definitions and related work. Technical report, Department of Computer Science Trinity College Dublin, Ireland, April 2004.
-
(2004)
-
-
Tsymbal, A.1
-
17
-
-
77952642202
-
Incremental induction of decision trees
-
P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161-186, 1989.
-
(1989)
Machine Learning
, vol.4
, pp. 161-186
-
-
Utgoff, P.E.1
-
18
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pages 226-235, 2003.
-
(2003)
Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
19
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|