메뉴 건너뛰기




Volumn 13, Issue 8, 2013, Pages 3449-3458

A hybrid artificial intelligence model for river flow forecasting

Author keywords

Black box approaches; Case based reasoning; Hybrid forecasting system; Hydrologic models; River flow forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE TECHNIQUES; BLACK BOX APPROACH; DEGREE OF NON-LINEARITY; HYBRID ARTIFICIAL INTELLIGENCES; HYBRID FORECASTING; HYDROLOGIC MODELS; RIVER FLOW FORECASTING; TEMPORAL AND SPATIAL SCALE;

EID: 84878132500     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.04.014     Document Type: Article
Times cited : (54)

References (51)
  • 2
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • DOI 10.1016/S0022-1694(02)00112-9, PII S0022169402001129
    • B. Sivakumar, A.W. Jayawardena, and T.M.K.G. Fernando River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches Journal of Hydrology 265 1-4 2002 225 245 (Pubitemid 35028775)
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 3
    • 15944369315 scopus 로고    scopus 로고
    • Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model
    • DOI 10.1016/j.jhydrol.2004.08.028, PII S0022169404004093
    • W. Collischon, R. Hass, I. Andreolli, and C.E. Morelli Forecasting river Uruguay flow using rainfall forecast from a regional weather-prediction model Journal of Hydrology 305 2005 87 98 (Pubitemid 40428090)
    • (2005) Journal of Hydrology , vol.305 , Issue.1-4 , pp. 87-98
    • Collischonn, W.1    Haas, R.2    Andreolli, I.3    Tucci, C.E.M.4
  • 7
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • DOI 10.1016/j.asoc.2006.03.002, PII S1568494606000317
    • A. Jain, and A.M. Kumar Hybrid neural network models for hydrologic time series forecasting Applied Soft Computing 7 2 2007 585 592 (Pubitemid 46205467)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 8
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • DOI 10.1016/j.jhydrol.2005.09.032, PII S0022169405004981
    • W. Wang, P.H.A.J.M. Van Gelder, J.K. Vrijling, and J. Ma Forecasting daily streamflow using hybrid ANN models Journal of Hydrology 324 1-4 2006 383 399 (Pubitemid 43729372)
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1    Gelder, P.H.A.J.M.V.2    Vrijling, J.K.3    Ma, J.4
  • 9
    • 33645974258 scopus 로고    scopus 로고
    • Modular learning models in forecasting natural phenomena
    • D.P. Solomatine, and M.B. Siek Modular learning models in forecasting natural phenomena Neural Networks 19 2 2006 215 224
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 215-224
    • Solomatine, D.P.1    Siek, M.B.2
  • 11
    • 32444450552 scopus 로고    scopus 로고
    • Evaluating the air-sea interactions and fluxes using an instance-based reasoning system
    • Binding Environmental Sciences and AI
    • J.M. Corchado, J. Aiken, E.S. Corchado, and F. Fdez-Riverola Evaluating the air-sea interactions and fluxes using an instance-based reasoning system AI Communications 18 4 2005 247 256 (Pubitemid 43227080)
    • (2005) AI Communications , vol.18 , Issue.4 , pp. 247-256
    • Corchado, J.M.1    Aiken, J.2    Corchado, E.S.3    Fdez-Riverola, F.4
  • 12
    • 0034863505 scopus 로고    scopus 로고
    • A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications
    • DOI 10.1029/2001WR000299
    • T.S. Kokkonen, and A.J. Jakeman A comparison of metric and conceptual approaches in rainfall-runoff modeling and its applications Water Resources Research 7 9 2001 2345 2352 (Pubitemid 32804536)
    • (2001) Water Resources Research , vol.37 , Issue.9 , pp. 2345-2352
    • Kokkonen, T.S.1    Jakeman, A.J.2
  • 13
    • 0022929207 scopus 로고
    • An introduction to the European hydrological system - Systeme hydrologique Europeen, "sHE", 2: Structure of a physically based distributed modelling system
    • M.B. Abbot, J.C. Bathurst, J.A. Cunge, P.E. O'Connell, and J. Rasmussen An introduction to the European hydrological system - systeme hydrologique Europeen, "SHE", 2: structure of a physically based distributed modelling system Journal of Hydrology 87 1-2 1986 45 59
    • (1986) Journal of Hydrology , vol.87 , Issue.12 , pp. 45-59
    • Abbot, M.B.1    Bathurst, J.C.2    Cunge, J.A.3    O'Connell, P.E.4    Rasmussen, J.5
  • 14
    • 28744432693 scopus 로고    scopus 로고
    • An improved neural network approach to the determination of aquifer parameters
    • L. Gwo-Fong, and C. Guo-Rong An improved neural network approach to the determination of aquifer parameters Journal of Hydrology 316 1-4 2006 281 289
    • (2006) Journal of Hydrology , vol.316 , Issue.14 , pp. 281-289
    • Gwo-Fong, L.1    Guo-Rong, C.2
  • 21
    • 33845562730 scopus 로고    scopus 로고
    • Split-parameter structure for the automatic calibration of distributed hydrological models
    • DOI 10.1016/j.jhydrol.2006.06.032, PII S0022169406003490
    • F. Francés, J.I. Vélez, and J.J. Vélez Split-parameter structure for the automatic calibration of distributed hydrological models Journal of Hydrology 332 1-2 2007 226 240 (Pubitemid 44937323)
    • (2007) Journal of Hydrology , vol.332 , Issue.1-2 , pp. 226-240
    • Frances, F.1    Velez, J.I.2    Velez, J.J.3
  • 22
    • 0032868083 scopus 로고    scopus 로고
    • New mathematical approaches in hydrological modeling - an application of artificial neural networks
    • DOI 10.1016/S1464-1909(98)00007-0, PII S1464190998000070
    • N.T. Lange New Mathematical Approaches in Hydrological Modeling - An Application of Artificial Neural Networks, Physics and Chemistry of the Earth, Part B: Hydrology Oceans and Atmosphere 24 1-2 1999 31 35 (Pubitemid 29415308)
    • (1999) Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere , vol.24 , Issue.1-2 , pp. 31-35
    • Lange, N.T.1
  • 23
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • DOI 10.1023/B:WARM.0000024727.94701.12
    • D.N. Kumar, K.S. Raju, and T. Sathish River flow forecasting using recurrent neural networks Water Resources Management 18 2 2004 143 161 (Pubitemid 38688203)
    • (2004) Water Resources Management , vol.18 , Issue.2 , pp. 143-161
    • Nagesh Kumar, D.1    Srinivasa Raju, K.2    Sathish, T.3
  • 25
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • H. Kerem Cigizoglu, and O. Kisi Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data Nordic Hydrology 36 1 2005 49 64 (Pubitemid 40620979)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 27
    • 34249885607 scopus 로고    scopus 로고
    • Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
    • DOI 10.1016/j.neunet.2007.04.019, PII S0893608007000457, Computational Intelligence in Earth and Environmental Sciences
    • G. Corzo, and D. Solomatine Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting Neural Networks 20 4 2007 528 536 (Pubitemid 46874850)
    • (2007) Neural Networks , vol.20 , Issue.4 , pp. 528-536
    • Corzo, G.1    Solomatine, D.2
  • 28
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • DOI 10.1016/j.jhydrol.2004.10.008, PII S0022169404004962
    • P. Coulibaly, and C.K. Baldwin Nonstationary hydrological time series forecasting using nonlinear dynamic methods Journal of Hydrology 307 1-4 2005 164 174 (Pubitemid 40743124)
    • (2005) Journal of Hydrology , vol.307 , Issue.1-4 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 30
    • 34249329952 scopus 로고    scopus 로고
    • A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting
    • DOI 10.1016/j.asoc.2006.01.009, PII S1568494606000147, Soft Computing for Time Series Prediction
    • P. Melin, A. Mancilla, M. Lopez, and O. Mendoza A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting Applied Soft Computing 7 4 2007 1217 1226 (Pubitemid 46810395)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.4 , pp. 1217-1226
    • Melin, P.1    Mancilla, A.2    Lopez, M.3    Mendoza, O.4
  • 32
    • 0031574174 scopus 로고    scopus 로고
    • Fractal analysis of flow on river Warta
    • M. Radziejewsk, and Z. Kundzwicz Fractal analysis of flow on river Warta Journal of Hydrology 200 1-4 1997 280 294
    • (1997) Journal of Hydrology , vol.200 , Issue.14 , pp. 280-294
    • Radziejewsk, M.1    Kundzwicz, Z.2
  • 33
    • 0035518725 scopus 로고    scopus 로고
    • River flow mass exponents with fractal channel networks and rainfall
    • DOI 10.1016/S0309-1708(01)00031-8, PII S0309170801000318
    • B.M. Troutman, and T.M. Over River flow mass exponents with fractal channel networks and rainfall Advances in Water Resources 24 9-10 2001 967 989 (Pubitemid 34057243)
    • (2001) Advances in Water Resources , vol.24 , Issue.9-10 , pp. 967-989
    • Troutman, B.M.1    Over, T.M.2
  • 34
    • 30144434604 scopus 로고    scopus 로고
    • QUAL2Kw - A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration
    • DOI 10.1016/j.envsoft.2005.07.002, PII S1364815205001489
    • G.J. Pelletier, S.C. Chapra, and H. Tao QUAL2Kw - A framework for modelling water quality in streams and rivers using a genetic algorithm for calibration Environmental Modelling and Software 21 2006 419 425 (Pubitemid 43053015)
    • (2006) Environmental Modelling and Software , vol.21 , Issue.3 , pp. 419-425
    • Pelletier, G.J.1    Chapra, S.C.2    Tao, H.3
  • 35
    • 77953238713 scopus 로고    scopus 로고
    • Parameter identification for modelling river network using genetic algorithm
    • H.-W. Tang, X.-K. Xin, W.-H. Dai, and Y. Xiao Parameter identification for modelling river network using genetic algorithm Journal of Hydrodynamics 22 2 2010 246 253
    • (2010) Journal of Hydrodynamics , vol.22 , Issue.2 , pp. 246-253
    • Tang, H.-W.1    Xin, X.-K.2    Dai, W.-H.3    Xiao, Y.4
  • 36
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • DOI 10.1016/j.jhydrol.2003.12.010, PII S0022169403005134
    • P.C. Nayk, K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri A neuro-fuzzy computing technique for modeling hydrological time series Journal of Hydrology 291 1-2 2004 52 66 (Pubitemid 38492436)
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 37
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • DOI 10.1016/j.matcom.2006.09.003, PII S0378475406002394
    • M. Firat, and M. Güngör River flow estimation using adaptive neuro fuzzy inference system Mathematics and Computers in Simulation 75 3-4 2007 87 96 (Pubitemid 46880072)
    • (2007) Mathematics and Computers in Simulation , vol.75 , Issue.3-4 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 38
    • 63649151694 scopus 로고    scopus 로고
    • River flow estimation from upstream flow records by artificial intelligence methods
    • M.E. Turan, and M.A. Yurdoser River flow estimation from upstream flow records by artificial intelligence methods Journal of Hydrology 369 1-2 2009 71 77
    • (2009) Journal of Hydrology , vol.369 , Issue.12 , pp. 71-77
    • Turan, M.E.1    Yurdoser, M.A.2
  • 39
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • DOI 10.1016/j.jhydrol.2005.03.013, PII S0022169405001526
    • G.B. Kingston, H.R. Maier, and M.F. Lambert Calibration and validation of neural networks to ensure physically plausible hydrological modeling Journal of Hydrology 314 1-4 2005 158 176 (Pubitemid 41727778)
    • (2005) Journal of Hydrology , vol.314 , Issue.1-4 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 40
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: the state of the art International Journal Forecasting 14 1 1998 35 62 (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.Y.3
  • 41
    • 0028401306 scopus 로고
    • Case-based reasoning: Foundational issues, methodological variations, and system approaches
    • A. Aamodt, and E. Plaza Case-based reasoning: foundational issues, methodological variations, and system approaches AI Communications 7 1 1994 39 59
    • (1994) AI Communications , vol.7 , Issue.1 , pp. 39-59
    • Aamodt, A.1    Plaza, E.2
  • 44
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Science 14 1990 179 211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 45
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • J.L. Elman Learning and development in neural networks: the importance of starting small Cognition 48 1 1993 71 99
    • (1993) Cognition , vol.48 , Issue.1 , pp. 71-99
    • Elman, J.L.1
  • 47
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • L. See, and S. Openshaw A hybrid multi-model approach to river level forecasting Hydrological Sciences Journal 45 4 2000 523 536 (Pubitemid 30648237)
    • (2000) Hydrological Sciences Journal , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 48
    • 47249096240 scopus 로고    scopus 로고
    • Modelling the property of compounds from structure: Statistical methods for models validation
    • DOI 10.1007/s10311-007-0119-9
    • S.-D. Bolboacǎ, and L. Jäntschi Modelling the property of compounds from structure: statistical methods for models validation Environmental Chemistry Letters 6 3 2008 175 181 (Pubitemid 351983033)
    • (2008) Environmental Chemistry Letters , vol.6 , Issue.3 , pp. 175-181
    • Bolboaca, S.-D.1    Jantschi, L.2
  • 49
    • 79960775642 scopus 로고    scopus 로고
    • Predictivity approach for quantitative structure-property models. Application for blood-brain barrier permeation of diverse drug-like compounds
    • S.-D. Bolboacǎ, and L. Jäntschi Predictivity approach for quantitative structure-property models. Application for blood-brain barrier permeation of diverse drug-like compounds International Journal of Molecular Sciences 12 7 2011 4348 4364
    • (2011) International Journal of Molecular Sciences , vol.12 , Issue.7 , pp. 4348-4364
    • Bolboacǎ, S.-D.1    Jäntschi, L.2
  • 50
    • 51749083258 scopus 로고    scopus 로고
    • Comparison of hybrid intelligent systems, neural networks and interval type-2 fuzzy logic for time series prediction
    • Orlando, FL, USA
    • O. Castillo, and P. Melin Comparison of hybrid intelligent systems, neural networks and interval type-2 fuzzy logic for time series prediction Proceedings of the International Joint Conference on Neural Networks Orlando, FL, USA 2007 3086 3091
    • (2007) Proceedings of the International Joint Conference on Neural Networks , pp. 3086-3091
    • Castillo, O.1    Melin, P.2
  • 51
    • 70350164942 scopus 로고    scopus 로고
    • An ensemble neural network architecture with fuzzy response integration for complex time series prediction. Evolutionary design of intelligent systems in modeling
    • M. Pulido, A. Mancilla, and P. Melin An ensemble neural network architecture with fuzzy response integration for complex time series prediction. Evolutionary design of intelligent systems in modeling Simulation and Control 2009 85 110
    • (2009) Simulation and Control , pp. 85-110
    • Pulido, M.1    Mancilla, A.2    Melin, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.