메뉴 건너뛰기




Volumn 10, Issue 1, 2013, Pages

Improving epidemiologic data analyses through multivariate regression modelling

Author keywords

[No Author keywords available]

Indexed keywords

BAYES THEOREM; BAYESIAN LEARNING; COMPARATIVE STUDY; CONFIDENCE INTERVAL; COVARIANCE; DATA ANALYSIS; DATA ANALYSIS SOFTWARE; EPIDEMIOLOGICAL DATA; HYPOTHESIS; INDEPENDENT VARIABLE; MAXIMUM LIKELIHOOD METHOD; MONTE CARLO METHOD; MULTIVARIATE ANALYSIS; MULTIVARIATE LOGISTIC REGRESSION ANALYSIS; PARSIMONY ANALYSIS; REVIEW; STATISTICAL MODEL;

EID: 84877832532     PISSN: None     EISSN: 17427622     Source Type: Journal    
DOI: 10.1186/1742-7622-10-4     Document Type: Review
Times cited : (57)

References (47)
  • 2
    • 34249761849 scopus 로고
    • Learning Bayesian networks - The combination of knowledge and statistical-data
    • Learning Bayesian networks-The combination of knowledge and statistical-data. Heckerman D, Geiger D, Chickering DM, Mach Learn 1995 20 3 197 243
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 5
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data
    • DOI 10.1126/science.1087361
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data. Jansen R, Yu HY, Greenbaum D, Kluger Y, Krogan NJ, Chung SB, Emili A, Snyder M, Greenblatt JF, Gerstein M, Science 2003 302 5644 449 453 10.1126/science.1087361 14564010 (Pubitemid 37296271)
    • (2003) Science , vol.302 , Issue.5644 , pp. 449-453
    • Jansen, R.1    Yu, H.2    Greenbaum, D.3    Kluger, Y.4    Krogan, N.J.5    Chung, S.6    Emili, A.7    Snyder, M.8    Greenblatt, J.F.9    Gerstein, M.10
  • 6
    • 77954576424 scopus 로고    scopus 로고
    • Revealing ecological networks using Bayesian network inference algorithms
    • 10.1890/09-0731.1 20715607
    • Revealing ecological networks using Bayesian network inference algorithms. Milns I, Beale CM, Smith VA, Ecology 2010 91 7 1892 1899 10.1890/09-0731.1 20715607
    • (2010) Ecology , vol.91 , Issue.7 , pp. 1892-1899
    • Milns, I.1    Beale, C.M.2    Smith, V.A.3
  • 7
    • 34548459831 scopus 로고    scopus 로고
    • A primer on learning in Bayesian networks for computational biology
    • DOI 10.1371/journal.pcbi.0030129
    • A primer on learning in Bayesian networks for computational biology. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR, PLoS Comput Biol 2007 3 8 129 10.1371/journal.pcbi.0030129 17784779 (Pubitemid 47358051)
    • (2007) PLoS Computational Biology , vol.3 , Issue.8 , pp. 1409-1416
    • Needham, C.J.1    Bradford, J.R.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 8
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • Causal protein-signaling networks derived from multiparameter single-cell data. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP, Science 2005 308 5721 523 529 10.1126/science.1105809 15845847 (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 9
    • 34347337742 scopus 로고    scopus 로고
    • CpG island mapping by epigenome prediction
    • DOI 10.1371/journal.pcbi.0030110
    • Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope. Poon AFY, Lewis FI, Pond SLK, Frost SDW, PLoS Comput Biol 2007 3 110 119 10.1371/journal.pcbi.0030110 (Pubitemid 47015840)
    • (2007) PLoS Computational Biology , vol.3 , Issue.6 , pp. 1055-1070
    • Bock, C.1    Walter, J.2    Paulsen, M.3    Lengauer, T.4
  • 10
    • 50549084385 scopus 로고    scopus 로고
    • Spidermonkey: Rapid detection of co-evolving sites using Bayesian graphical models
    • 10.1093/bioinformatics/btn313 18562270
    • Spidermonkey: rapid detection of co-evolving sites using Bayesian graphical models. Poon AFY, Lewis FI, Frost SDW, Pond SLK, Bioinformatics 2008 24 17 1949 1950 10.1093/bioinformatics/btn313 18562270
    • (2008) Bioinformatics , vol.24 , Issue.17 , pp. 1949-1950
    • Poon, A.F.Y.1    Lewis, F.I.2    Frost, S.D.W.3    Pond, S.L.K.4
  • 11
    • 84870425737 scopus 로고    scopus 로고
    • Revealing the complexity of health determinants in resource-poor Settings
    • 10.1093/aje/kws183 23139247
    • Revealing the complexity of health determinants in resource-poor Settings. Lewis FI, McCormick BJJ, Am J Epidemiol 2012 176 11 1051 1059 10.1093/aje/kws183 23139247
    • (2012) Am J Epidemiol , vol.176 , Issue.11 , pp. 1051-1059
    • Lewis, F.I.1    McCormick, B.J.J.2
  • 12
    • 84865566736 scopus 로고    scopus 로고
    • Identifying associations between pig pathologies using a multi-dimensional machine learning methodology
    • 10.1186/1746-6148-8-151 22937883
    • Identifying associations between pig pathologies using a multi-dimensional machine learning methodology. Sanchez-Vazquez MJ, Nielen M, Edwards SA, Gunn GJ Lewis, BMC Vet Res 2012 8 151 10.1186/1746-6148-8-151 22937883
    • (2012) BMC Vet Res , vol.8 , pp. 151
    • Sanchez-Vazquez, M.J.1    Nielen, M.2    Edwards, S.A.3    Lewis, G.G.J.4
  • 13
    • 42649140233 scopus 로고    scopus 로고
    • Bayesian networks with a logistic regression model for the conditional probabilities
    • 10.1016/j.ijar.2008.01.001
    • Bayesian networks with a logistic regression model for the conditional probabilities. Rijmen F, Int J Approximate Reasoning 2008 48 2 659 666 10.1016/j.ijar.2008.01.001
    • (2008) Int J Approximate Reasoning , vol.48 , Issue.2 , pp. 659-666
    • Rijmen, F.1
  • 14
    • 0001385178 scopus 로고
    • Miscellanea - The goodness of fit of regression formulae, and the distribution of regression coefficients
    • 10.2307/2341124
    • Miscellanea-The goodness of fit of regression formulae, and the distribution of regression coefficients. Fisher RA, J R Stat Soc 1922 85 597 612 10.2307/2341124
    • (1922) J R Stat Soc , vol.85 , pp. 597-612
    • Fisher, R.A.1
  • 16
    • 0001218846 scopus 로고
    • On the association of attributes in statistics: With illustrations from the material of the childhood sociesy, &c
    • 10.1098/rsta.1900.0019
    • On the association of attributes in statistics: with illustrations from the material of the childhood sociesy, &c. Yule GU, Philos Trans R Soc Lond Ser A-containing Papers Math Phys Character 1900 194 257 319 10.1098/rsta.1900.0019
    • (1900) Philos Trans R Soc Lond ser A-containing Papers Math Phys Character , vol.194 , pp. 257-319
    • Yule, G.U.1
  • 17
    • 0001745298 scopus 로고
    • The interpretation of interaction in contingency tables
    • The interpretation of interaction in contingency tables. Simpson EH, J R Stat Soc Ser B-stat Methodol 1951 13 2 238 241
    • (1951) J R Stat Soc ser B-stat Methodol , vol.13 , Issue.2 , pp. 238-241
    • Simpson, E.H.1
  • 18
    • 85040407923 scopus 로고    scopus 로고
    • Graphical models of applicants for credit
    • Graphical models of applicants for credit. Hand DJ, McConway KJ, Stanghellini E, IMA J Manage Math 1997 8 2 143 155 [ http://imaman. Oxfordjournals.org/content/8/2/143.abstract ] 10.1093/imaman/8.2.143
    • (1997) IMA J Manage Math , vol.8 , Issue.2 , pp. 143-155
    • Hand, D.J.1    McConway, K.J.2    Stanghellini, E.3
  • 19
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Friedman N, Koller D, Mach Learning 2003 50 1-2 95 125
    • (2003) Mach Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 20
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Exact Bayesian structure discovery in Bayesian networks. Koivisto M, Sood K, J Mach Learn Res 2004 5 549 573
    • (2004) J Mach Learn Res , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 21
    • 84868207617 scopus 로고    scopus 로고
    • Housing conditions and management practices associated with neonatal lamb mortality in sheep flocks in Norway
    • 10.1016/j.prevetmed.2012.06.007 22809562
    • Housing conditions and management practices associated with neonatal lamb mortality in sheep flocks in Norway. Holmoy IH, Kielland C, Stubsjoen SM, Hektoen L, Waage S, Prev Vet Med 2012 107 3-4 231 241 10.1016/j.prevetmed.2012. 06.007 22809562
    • (2012) Prev Vet Med , vol.107 , Issue.3-4 , pp. 231-241
    • Holmoy, I.H.1    Kielland, C.2    Stubsjoen, S.M.3    Hektoen, L.4    Waage, S.5
  • 22
    • 84867138985 scopus 로고    scopus 로고
    • Risk factors associated with brucellosis seropositivity among cattle in the central savannah-forest area of Ivory Coast
    • 22704904
    • Risk factors associated with brucellosis seropositivity among cattle in the central savannah-forest area of Ivory Coast. Sanogo M, Abatih E, Thys E, Fretin D, Berkvens D, Saegerman C, Prev Vet Med 2012 107 1-2 51 56 [ http://www.sciencedirect.com/science/article/pii/S0167587712001663 ] 22704904
    • (2012) Prev Vet Med , vol.107 , Issue.1-2 , pp. 51-56
    • Sanogo, M.1    Abatih, E.2    Thys, E.3    Fretin, D.4    Berkvens, D.5    Saegerman, C.6
  • 25
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Bayesian model selection in social research. Raftery AE, Sociol Methodol 1995 25 111 163
    • (1995) Sociol Methodol , vol.25 , pp. 111-163
    • Raftery, A.E.1
  • 26
    • 9644301241 scopus 로고    scopus 로고
    • Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests
    • DOI 10.1080/10635150490522304
    • Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Posada D, Buckley TR, Syst Biol 2004 53 5 793 808 10.1080/ 10635150490522304 15545256 (Pubitemid 39568279)
    • (2004) Systematic Biology , vol.53 , Issue.5 , pp. 793-808
    • Posada, D.1    Buckley, T.R.2
  • 28
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • 10.1162/neco.1992.4.3.415
    • Bayesian interpolation. Mackay DJC, Neural Comput 1992 4 3 415 447 10.1162/neco.1992.4.3.415
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 31
    • 0001589778 scopus 로고
    • Correlation and causation Part I. Method of path coefficients
    • Correlation and causation Part I. Method of path coefficients. Wright S, J Agric Res 1920 20 0557 0585
    • (1920) J Agric Res , vol.20 , pp. 0557-0585
    • Wright, S.1
  • 32
    • 0015368304 scopus 로고
    • Air-pollution, climate, and home heating - Their effects on us mortality-rates
    • 10.2105/AJPH.62.7.909
    • Air-pollution, climate, and home heating-their effects on us mortality-rates. Lave LB, Seskin EP, Am J Public Health Nations Health 1972 62 7 909 10.2105/AJPH.62.7.909
    • (1972) Am J Public Health Nations Health , vol.62 , Issue.7 , pp. 909
    • Lave, L.B.1    Seskin, E.P.2
  • 33
    • 0017066184 scopus 로고
    • Drinking-water and cancer mortality in Louisiana
    • 10.1126/science.935854 935854
    • Drinking-water and cancer mortality in Louisiana. Page T, Harris RH, Epstein SS, Science 1976 193 4247 55 57 10.1126/science.935854 935854
    • (1976) Science , vol.193 , Issue.4247 , pp. 55-57
    • Page, T.1    Harris, R.H.2    Epstein, S.S.3
  • 34
    • 84913761381 scopus 로고
    • 100th Annual meeting of the american public health association on a study of risks medical care and infant mortality atlantic city New-jersey USA November 14-15 1972
    • 100th Annual meeting of the american public health association on a study of risks medical care and infant mortality atlantic city New-jersey USA November 14-15 1972. Chase HC, Ame J Public Health 1973 63 SUPPL 1 56
    • (1973) Ame J Public Health , vol.63 , Issue.SUPPL. , pp. 1-56
    • Chase, H.C.1
  • 35
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: Evolution, critique and future directions
    • 10.1002/sim.3680 19630097
    • The BUGS project: evolution, critique and future directions. Lunn D, Spiegelhalter D, Thomas A, Best N, Stat Med 2009 28 25 3049 3067 10.1002/sim.3680 19630097
    • (2009) Stat Med , vol.28 , Issue.25 , pp. 3049-3067
    • Lunn, D.1    Spiegelhalter, D.2    Thomas, A.3    Best, N.4
  • 37
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • 10.1080/01621459.1986.10478240
    • Accurate approximations for posterior moments and marginal densities. Tierney L, Kadane JB, J Am Stat Assoc 1986 81 393 82 86 10.1080/01621459.1986. 10478240
    • (1986) J Am Stat Assoc , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 38
    • 0001245740 scopus 로고
    • Bayesian Computational methods
    • 10.1098/rsta.1991.0130
    • Bayesian Computational methods. Smith AFM, Philos Trans R Soc Lond Ser Math Phys Eng Sci 1991 337 1647 369 386 10.1098/rsta.1991.0130
    • (1991) Philos Trans R Soc Lond ser Math Phys Eng Sci , vol.337 , Issue.1647 , pp. 369-386
    • Smith, A.F.M.1
  • 39
    • 5344244656 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing [ http://www.R-project.org ][ISBN 3-900051-07-0]
    • R Development Core Team, R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing 2006 [ http://www.R-project.org ][ISBN 3-900051-07-0]
    • (2006) R: A Language and Environment for Statistical Computing
  • 40
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • 10.1111/j.1467-9868.2008.00700.x
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Rue H, Martino S, Chopin N, J R Stat Soc Ser B-Stat Methodol 2009 71 319 392 10.1111/j.1467-9868.2008.00700.x
    • (2009) J R Stat Soc ser B-Stat Methodol , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 41
    • 2442695245 scopus 로고    scopus 로고
    • What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models
    • DOI 10.1097/01.psy.0000127692.23278.a9
    • What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Babyak MA, Psychosom Med 2004 66 3 411 421 10.1097/01.psy.0000127692.23278.a9 15184705 (Pubitemid 38668414)
    • (2004) Psychosomatic Medicine , vol.66 , Issue.3 , pp. 411-421
    • Babyak, M.A.1
  • 42
    • 36948998606 scopus 로고    scopus 로고
    • An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope
    • DOI 10.1371/journal.pcbi.0030231
    • An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. Poon AFY, Lewis FI, Pond SLK, Frost SDW, PLoS Comput Biol 2007 3 11 2279 2290 (Pubitemid 350241951)
    • (2007) PLoS Computational Biology , vol.3 , Issue.11 , pp. 2279-2290
    • Poon, A.F.Y.1    Lewis, F.I.2    Kosakovsky Pond, S.L.3    Frost, S.D.W.4
  • 44
    • 0031272327 scopus 로고    scopus 로고
    • Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Chickering DM, Heckerman D, Mach Learning 1997 29 2-3 181 212 (Pubitemid 127510038)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 181-212
    • Chickering, D.M.1    Heckerman, D.2
  • 46
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Local computations with probabilities on graphical structures and their application to expert systems. Lauritzen SL, Spiegelhalter DJ, J R Stat Soc Ser B-Methodological 1988 50 2 157 224
    • (1988) J R Stat Soc ser B-Methodological , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.