메뉴 건너뛰기




Volumn 4, Issue , 2012, Pages 2618-2626

A quasi-Newton proximal splitting method

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX MINIMIZATION; EFFICIENT IMPLEMENTATION; OPTIMIZATION METHOD; PIECEWISE LINEAR; PROXIMITY OPERATOR; QUASI-NEWTON METHODS; SPARSE RECOVERY; SPLITTING METHOD;

EID: 84877780049     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (132)

References (31)
  • 2
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Computing, 16(5):1190-1208, 1995.
    • (1995) SIAM J. Sci. Computing , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 3
    • 84976486021 scopus 로고    scopus 로고
    • Proximal splitting methods in signal processing
    • H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, editors, Springer-Verlag, New York
    • P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing. In H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H.Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185-212. Springer-Verlag, New York, 2011.
    • (2011) Fixed-Point Algorithms for Inverse Problems in Science and Engineering , pp. 185-212
    • Combettes, P.L.1    Pesquet, J.C.2
  • 4
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • E. G. Birgin, J. M. Martínez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10(4):1196-1211, 2000.
    • (2000) SIAM J. Optim. , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.G.1    Martínez, J.M.2    Raydan, M.3
  • 6
    • 0001531895 scopus 로고
    • Two point step size gradient method
    • J. Barzilai and J. Borwein. Two point step size gradient method. IMA J. Numer. Anal., 8:141-148, 1988.
    • (1988) IMA J. Numer. Anal. , vol.8 , pp. 141-148
    • Barzilai, J.1    Borwein, J.2
  • 7
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imaging Sci., 2(1):183-202, 2009.
    • (2009) SIAM J. on Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 9
    • 84856673847 scopus 로고    scopus 로고
    • Diagonal preconditioning for first order primal-dual algorithms in convex optimization
    • T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In ICCV, 2011.
    • (2011) ICCV
    • Pock, T.1    Chambolle, A.2
  • 10
  • 11
    • 0031345518 scopus 로고    scopus 로고
    • Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
    • C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Software, 23(4):550-560, 1997.
    • (1997) ACM Trans. Math. Software , vol.23 , Issue.4 , pp. 550-560
    • Zhu, C.1    Byrd, R.H.2    Lu, P.3    Nocedal, J.4
  • 12
    • 84855220977 scopus 로고    scopus 로고
    • Remark on älgorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization
    • José Luis Morales and Jorge Nocedal. Remark on älgorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization. ACM Trans. Math. Softw., 38(1):7:1-7:4, 2011.
    • (2011) ACM Trans. Math. Softw. , vol.38 , Issue.1 , pp. 71-714
    • Morales, J.L.1    Nocedal, J.2
  • 13
    • 34249008073 scopus 로고    scopus 로고
    • A new active set algorithm for box constrained optimization
    • W.W. Hager and H. Zhang. A new active set algorithm for box constrained optimization. SIAM J. Optim., 17:526-557, 2006.
    • (2006) SIAM J. Optim. , vol.17 , pp. 526-557
    • Hager, W.W.1    Zhang, H.2
  • 14
    • 51949096294 scopus 로고    scopus 로고
    • Scalable training of l1-regularized log-linear models
    • A. Andrew and J. Gao. Scalable training of l1-regularized log-linear models. In ICML, 2007.
    • (2007) ICML
    • Andrew, A.1    Gao, J.2
  • 15
    • 70049118528 scopus 로고    scopus 로고
    • Fast optimization methods for l1 regularization: A comparative study and two new approaches
    • M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for l1 regularization: A comparative study and two new approaches. In European Conference on Machine Learning, 2007.
    • (2007) European Conference on Machine Learning
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 16
    • 77955666600 scopus 로고    scopus 로고
    • A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
    • Z.Wen,W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput., 32(4):1832-1857, 2010.
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1832-1857
    • Wen, Z.1    Yin, W.2    Goldfarb, D.3    Zhang, Y.4
  • 18
    • 77951160087 scopus 로고    scopus 로고
    • A quasi-Newton approach to nonsmooth convex optimization problems in machine learning
    • J. Yu, S.V.N. Vishwanathan, S. Guenter, and N. Schraudolph. A quasi-Newton approach to nonsmooth convex optimization problems in machine learning. J. Machine Learning Research, 11:1145-1200, 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 1145-1200
    • Yu, J.1    Vishwanathan, S.V.N.2    Guenter, S.3    Schraudolph, N.4
  • 19
    • 77955995598 scopus 로고    scopus 로고
    • Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm
    • M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm. In AISTATS, 2009.
    • (2009) AISTATS
    • Schmidt, M.1    Van Den Berg, E.2    Friedlander, M.3    Murphy, K.4
  • 20
    • 84857722294 scopus 로고    scopus 로고
    • Projected Newton-type methods in machine learning
    • S. Sra, S. Nowozin, and S.Wright, editors, MIT Press
    • M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine learning. In S. Sra, S. Nowozin, and S.Wright, editors, Optimization for Machine Learning. MIT Press, 2011.
    • (2011) Optimization for Machine Learning
    • Schmidt, M.1    Kim, D.2    Sra, S.3
  • 22
    • 0041356704 scopus 로고
    • Fonctions convexes duales et points proximaux dans un espace hilbertien
    • J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. CRAS Sér. A Math., 255:2897-2899, 1962.
    • (1962) CRAS Sér. A Math. , vol.255 , pp. 2897-2899
    • Moreau, J.-J.1
  • 23
    • 44449098059 scopus 로고    scopus 로고
    • A semismooth Newton method for Tikhonov functionals with sparsity constraints
    • R. Griesse and D. A. Lorenz. A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Problems, 24(3):035007, 2008.
    • (2008) Inverse Problems , vol.24 , Issue.3 , pp. 035007
    • Griesse, R.1    Lorenz, D.A.2
  • 24
    • 0001345577 scopus 로고
    • Quasi-Newton methods and their application to function minimization
    • C. Broyden. Quasi-Newton methods and their application to function minimization. Math. Comp., 21:577-593, 1967.
    • (1967) Math. Comp. , vol.21 , pp. 577-593
    • Broyden, C.1
  • 27
    • 79251469431 scopus 로고    scopus 로고
    • Tackling box-constrained optimization via a new projected quasi-Newton approach
    • I. Dhillon, D. Kim, and S. Sra. Tackling box-constrained optimization via a new projected quasi-Newton approach. SIAM J. Sci. Comput., 32(6):3548-3563, 2010.
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.6 , pp. 3548-3563
    • Dhillon, I.1    Kim, D.2    Sra, S.3
  • 28
    • 33746427463 scopus 로고    scopus 로고
    • On the Barzilai-Borwein method
    • Liqun Qi, Koklay Teo, Xiaoqi Yang, Panos M. Pardalos, and Donald W. Hearn, editors, volume 96 of Applied Optimization, Springer US
    • Roger Fletcher. On the Barzilai-Borwein method. In Liqun Qi, Koklay Teo, Xiaoqi Yang, Panos M. Pardalos, and Donald W. Hearn, editors, Optimization and Control with Applications, volume 96 of Applied Optimization, pages 235-256. Springer US, 2005.
    • (2005) Optimization and Control with Applications , pp. 235-256
    • Fletcher, R.1
  • 30
    • 0032637646 scopus 로고    scopus 로고
    • A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices
    • W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices. Computing, 62:89-108, 1999.
    • (1999) Computing , vol.62 , pp. 89-108
    • Hackbusch, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.