메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 77-126

Reduced rank regression models with latent variables in Bayesian functional data analysis

Author keywords

Func tional regression; Functional canonical correlation analysis; Functional data analysis; Functional discriminant analysis; Functional prediction

Indexed keywords


EID: 79957851337     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/11-BA603     Document Type: Article
Times cited : (6)

References (58)
  • 4
    • 33745859053 scopus 로고    scopus 로고
    • A probabilistic interpretation of canonical correlation analysis
    • Technical Report 688. Dept. of Statistics, University of California, Berkeley
    • Bach, F. and Jordan, M. (2005). "A probabilistic interpretation of canonical correlation analysis." Technical Report 688. Dept. of Statistics, University of California, Berkeley.
    • (2005)
    • Bach, F.1    Jordan, M.2
  • 5
    • 39849083922 scopus 로고    scopus 로고
    • Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogesis
    • Baladandayuthapani, V., Mallick, B., Hong, M., Lupton, J., Turner, N., and Carroll, R. (2007). "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogesis." Biometrics, 64: 64-73.
    • (2007) Biometrics , vol.64 , pp. 64-73
    • Baladandayuthapani, V.1    Mallick, B.2    Hong, M.3    Lupton, J.4    Turner, N.5    Carroll, R.6
  • 6
    • 79957875132 scopus 로고    scopus 로고
    • Bayesian semiparametric clustering of functional predictors
    • Bigelow, J. and Dunson, D. (2006). "Bayesian semiparametric clustering of functional predictors." URL: http://ftp.isds.duke.edu/WorkingPapers/0613.pdf.
    • (2006)
    • Bigelow, J.1    Dunson, D.2
  • 7
    • 79951765819 scopus 로고    scopus 로고
    • Ecient bounds for the Softmax Function and Applications to Approximate Inference in Hybrid models
    • Conference, Whistler, Canada December
    • Bouchard, G. (2007). "Ecient bounds for the Softmax Function and Applications to Approximate Inference in Hybrid models." In Neural Information Processing Systems Conference, Whistler, Canada, December 78.
    • (2007) In Neural Information Processing Systems , pp. 7-8
    • Bouchard, G.1
  • 10
    • 34247396181 scopus 로고    scopus 로고
    • Smoothing splines estimators in functional linear regression with errorsinvariables
    • Cardot, H., Crambes, C., Kneip, A., and Sarda, P. (2007). "Smoothing splines estimators in functional linear regression with errorsinvariables." Computational Statistics and Data Analysis, 51: 4832-4848.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 4832-4848
    • Cardot, H.1    Crambes, C.2    Kneip, A.3    Sarda, P.4
  • 13
    • 0005900859 scopus 로고    scopus 로고
    • Flexible Bayesian Independent Component Analysis for Blind Source Separation
    • San Diego, December 2001
    • Choudrey, W. and Roberts, S. (2001). "Flexible Bayesian Independent Component Analysis for Blind Source Separation." In Proceedings of ICA2001, San Diego, December 2001.
    • (2001) Proceedings of ICA2001
    • Choudrey, W.1    Roberts, S.2
  • 14
    • 8644286824 scopus 로고    scopus 로고
    • Emerging Issues in Longitudinal and Functional Data Analysis Introduction
    • Davidian, M., Lin, X., and Wang, J.L. (2004). "Emerging Issues in Longitudinal and Functional Data Analysis. Introduction." Statistica Sinica, 14: 613-614.
    • (2004) Statistica Sinica , vol.14 , pp. 613-614
    • Davidian, M.1    Lin, X.2    Wang, J.L.3
  • 15
    • 55749105104 scopus 로고    scopus 로고
    • Bayesian nonlinear regression models with skewelliptical errors: Applications to the classification of longitudinal profiles
    • De la Cruz, R. (2008). "Bayesian nonlinear regression models with skewelliptical errors: Applications to the classification of longitudinal profiles." Computational Statistics and Data Analysis, 53: 436-449.
    • (2008) Computational Statistics and Data Analysis , vol.53 , pp. 436-449
    • De la Cruz, R.1
  • 18
    • 84952149204 scopus 로고
    • A Statistical View of Some Chemometrics Regression Tools
    • (with discussion)
    • Frank, I. and Friedman, H. (1993). "A Statistical View of Some Chemometrics Regression Tools." Technometrics, 35: 109-148. (with discussion).
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, H.2
  • 19
    • 0344707492 scopus 로고    scopus 로고
    • Bayesian reduced rank regression in econometrics
    • Geweke, J. (1996). "Bayesian reduced rank regression in econometrics." Journal of Econometrics, 75: 121-146.
    • (1996) Journal of Econometrics , vol.75 , pp. 121-146
    • Geweke, J.1
  • 21
    • 79957795408 scopus 로고
    • Principal Proles
    • Hastie, T. and Little, F. (1987). "Principal Proles." URL: http://wwwstat.stanford.edu/~hastie/Papers/PrincipalProles.pdf.
    • (1987)
    • Hastie, T.1    Little, F.2
  • 22
    • 0036020889 scopus 로고    scopus 로고
    • Generalized linear models with functional predictors
    • James. (2002). "Generalized linear models with functional predictors." Journal of the Royal Statistal Society B, 64: 411-432.
    • (2002) Journal of the Royal Statistal Society B , vol.64 , pp. 411-432
    • James1
  • 23
    • 0035535702 scopus 로고    scopus 로고
    • Functional linear discriminant analysis for irregularly sampled curves
    • James, G. and Hastie, T. (2001). "Functional linear discriminant analysis for irregularly sampled curves." Journal of the Royal Statistal Society B, 63: 533-550.
    • (2001) Journal of the Royal Statistal Society B , vol.63 , pp. 533-550
    • James, G.1    Hastie, T.2
  • 24
    • 34548163381 scopus 로고    scopus 로고
    • Extending ICA for nding jointly dependent components for two related data sets
    • Karhunen, J. (2007). "Extending ICA for nding jointly dependent components for two related data sets." Neurocomputing, 70: 2969-2979.
    • (2007) Neurocomputing , vol.70 , pp. 2969-2979
    • Karhunen, J.1
  • 25
    • 77954524672 scopus 로고    scopus 로고
    • Bayesian Functional ANOVA Modeling Using Gaussian Process Prior Distributions
    • Kaufman, C. and Sain, S. (2010). "Bayesian Functional ANOVA Modeling Using Gaussian Process Prior Distributions." Bayesian Analysis, 5: 123-150.
    • (2010) Bayesian Analysis , vol.5 , pp. 123-150
    • Kaufman, C.1    Sain, S.2
  • 26
    • 55949104732 scopus 로고    scopus 로고
    • Probabilistic approach to detecting dependencies between data sets
    • Klami, A. and Kaski, S. (2008). "Probabilistic approach to detecting dependencies between data sets." Neurocomputing, 72: 39-46.
    • (2008) Neurocomputing , vol.72 , pp. 39-46
    • Klami, A.1    Kaski, S.2
  • 27
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian Model Assessment in Factor Analysis
    • Lopes, H. and West, M. (2004). "Bayesian Model Assessment in Factor Analysis." Statistica Sinica, 14: 41-67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.1    West, M.2
  • 28
    • 68149091853 scopus 로고    scopus 로고
    • Nonparametric Bayes kernel-based priors for functional data analysis
    • MacLehose, R. and Dunson, D. (2009). "Nonparametric Bayes kernel-based priors for functional data analysis." Statistica Sinica, 19: 611-629.
    • (2009) Statistica Sinica , vol.19 , pp. 611-629
    • MacLehose, R.1    Dunson, D.2
  • 31
    • 0035632501 scopus 로고    scopus 로고
    • Dimensionality reduction approach to multivariate prediction
    • Merola, M. and Abraham, B. (2001). "Dimensionality reduction approach to multivariate prediction." Canadian Journal of Statistics, 29: 191-200.
    • (2001) Canadian Journal of Statistics , vol.29 , pp. 191-200
    • Merola, M.1    Abraham, B.2
  • 32
    • 84899022480 scopus 로고    scopus 로고
    • Automatic choice of dimensionality for PCA
    • Leen, T., Dieterich, T., and Tresp, V. (eds.) MIT Press
    • Minka, T. (2001). "Automatic choice of dimensionality for PCA." In Leen, T., Dieterich, T., and Tresp, V. (eds.), Advances in Neural Information Processing Systems, volume 13, 598-604. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 598-604
    • Minka, T.1
  • 33
    • 34447562371 scopus 로고    scopus 로고
    • Analysis of Mass SpectrometryData Using Bayesian Wavelet-Based Functional Mixed Models
    • Do, K.,Mueller, P., and Vannucci, M. (eds.) New York: Cambridge University Press
    • Morris, J., Brown, P., Baggerly, K., and Coombes, K. (2006). "Analysis of Mass SpectrometryData Using Bayesian Wavelet-Based Functional Mixed Models." In Do, K.,Mueller, P., and Vannucci, M. (eds.), Bayesian Inference for Gene Expression and Proteomics, 269-288. New York: Cambridge University ress.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 269-288
    • Morris, J.1    Brown, P.2    Baggerly, K.3    Coombes, K.4
  • 35
    • 33750515938 scopus 로고    scopus 로고
    • Regression models for functional data by reproducing kernel Hilbert space methods
    • Preda, C. (2007). "Regression models for functional data by reproducing kernel Hilbert space methods." Journal of Statistical Planning and Inference, 137: 29-840.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 829-840
    • Preda, C.1
  • 38
  • 41
    • 56449127811 scopus 로고    scopus 로고
    • Closedform supervised dimensionality reduction with generalized linear models
    • New York: ACM
    • Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., and Gordon, G. J. (2008). "Closedform supervised dimensionality reduction with generalized linear models." In ACM Int. Conf. Proc. Series, volume 307, 832-839. New York: ACM.
    • (2008) ACM Int. Conf. Proc. Series , vol.307 , pp. 832-839
    • Rish, I.1    Grabarnik, G.2    Cecchi, G.3    Pereira, F.4    Gordon, G.J.5
  • 42
    • 60449108968 scopus 로고    scopus 로고
    • Bayesian nonparametric functional data analysis through density estimation
    • Rodriguez, A., Dunson, D., and Gelfand, A. (2009). "Bayesian nonparametric functional data analysis through density estimation." Biometrika, 96: 149-162.
    • (2009) Biometrika , vol.96 , pp. 149-162
    • Rodriguez, A.1    Dunson, D.2    Gelfand, A.3
  • 47
    • 39849092686 scopus 로고    scopus 로고
    • A Bayesian model for sparse functional data
    • Thompson, W. and Rosen, O. (2008). "A Bayesian model for sparse functional data." Biometrics, 64: 54-63.
    • (2008) Biometrics , vol.64 , pp. 54-63
    • Thompson, W.1    Rosen, O.2
  • 49
    • 36048956916 scopus 로고    scopus 로고
    • An overview to modelling functional data
    • Valderrama, M. (2007). "An overview to modelling functional data." Computational Statistics, 22: 331-334.
    • (2007) Computational Statistics , vol.22 , pp. 331-334
    • Valderrama, M.1
  • 51
    • 77949774437 scopus 로고    scopus 로고
    • Bayesian functional principal components analysis for binary and count data
    • van der Linde, A. (2009). "Bayesian functional principal components analysis for binary and count data." Advances in Statistical Analysis, 93: 307-333.
    • (2009) Advances in Statistical Analysis , vol.93 , pp. 307-333
    • van der Linde, A.1
  • 52
    • 79957877028 scopus 로고    scopus 로고
    • Reduced rank regression in Bayesian FDA
    • Department of Mathematics, Institute of Statistics, University of Bremen, Germany
    • van der Linde, A. (2010). "Reduced rank regression in Bayesian FDA." Technical report. Department of Mathematics, Institute of Statistics, University of remen, Germany.
    • (2010) Technical report
    • van der Linde, A.1
  • 53
    • 0003973340 scopus 로고    scopus 로고
    • Statistical Analysis in Climate Research
    • Cambridge: Cambridge University Press
    • von Storch, H. and Zwiers, F. (1999). Statistical Analysis in Climate Research. Cambridge: Cambridge University Press.
    • (1999)
    • von Storch, H.1    Zwiers, F.2
  • 54
    • 34248630554 scopus 로고    scopus 로고
    • Variational Bayesian approach to canonical correlation analysis
    • Wang, C. (2007). "Variational Bayesian approach to canonical correlation analysis." IEEE Transactions on Neural Networks, 18: 905-910.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 905-910
    • Wang, C.1
  • 55
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian Factor Regression Models in the Large p, Small n Paradigm
    • In et al., J. B. (ed.) Oxford University Press
    • West, M. (2003). "Bayesian Factor Regression Models in the Large p, Small n Paradigm." In et al., J. B. (ed.), Bayesian Statistics 7, 733-742. Oxford niversity Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 733-742
    • West, M.1
  • 56
    • 84993729357 scopus 로고    scopus 로고
    • Reduced-rank Vector Generalized Linear Models
    • Yee, T. and Hastie, T. (2003). "Reduced-rank Vector Generalized Linear Models." Statistical Modelling, 3: 15-41.
    • (2003) Statistical Modelling , vol.3 , pp. 15-41
    • Yee, T.1    Hastie, T.2
  • 58
    • 34547659140 scopus 로고    scopus 로고
    • TwoStage Functional Mixed Models for Evaluating the E ect of Longitudinal Covariate Proles on Scalar Outcome
    • Zhang, D., Lin, X., and Sowers, M. (2007). "TwoStage Functional Mixed Models for Evaluating the E ect of Longitudinal Covariate Proles on Scalar Outcome." Biometrics, 63: 351-362.
    • (2007) Biometrics , vol.63 , pp. 351-362
    • Zhang, D.1    Lin, X.2    Sowers, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.