메뉴 건너뛰기




Volumn 112, Issue , 2013, Pages 200-210

Risk group detection and survival function estimation for interval coded survival methods

Author keywords

Breast cancer prognosis; Monotonic regression; Survival analysis

Indexed keywords

ADVANCED MODELING TECHNIQUES; BREAST CANCER PROGNOSIS; INTERPRETABILITY; MONOTONIC REGRESSIONS; PROPORTIONAL HAZARD MODELS; SURVIVAL ANALYSIS; SURVIVAL CURVES; SURVIVAL FUNCTION;

EID: 84877589964     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.12.049     Document Type: Article
Times cited : (5)

References (37)
  • 3
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 5
    • 77952238401 scopus 로고    scopus 로고
    • A tutorial on support vector machine-based methods for classification problems in chemometrics
    • Luts J., Ojeda F., Van De Plas R., De Moor B., Van Huffel S., Suykens J.A.K. A tutorial on support vector machine-based methods for classification problems in chemometrics. Anal. Chim. Acta 2010, 665(2):129-145.
    • (2010) Anal. Chim. Acta , vol.665 , Issue.2 , pp. 129-145
    • Luts, J.1    Ojeda, F.2    Van De Plas, R.3    De Moor, B.4    Van Huffel, S.5    Suykens, J.A.K.6
  • 6
    • 0031921607 scopus 로고    scopus 로고
    • Feedforward neural networks for the analysis of censored survival data. a partial logistic regression approach
    • Biganzoli E., Boracchi P., Mariani L., Marubini E. Feedforward neural networks for the analysis of censored survival data. a partial logistic regression approach. Stat. Med. 1998, 17(10):1169-1186.
    • (1998) Stat. Med. , vol.17 , Issue.10 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 7
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa P., Wong H., Harris P., Swindell R. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif. Intell. Med. 2003, 28(1):1-25.
    • (2003) Artif. Intell. Med. , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 9
    • 80052431188 scopus 로고    scopus 로고
    • Support vector methods for survival analysis. a comparison between ranking and regression approaches
    • Van Belle V., Pelckmans K., Van Huffel S., Suykens J.A.K. Support vector methods for survival analysis. a comparison between ranking and regression approaches. Artif. Intell. Med. 2011, 53(2):107-118.
    • (2011) Artif. Intell. Med. , vol.53 , Issue.2 , pp. 107-118
    • Van Belle, V.1    Pelckmans, K.2    Van Huffel, S.3    Suykens, J.A.K.4
  • 10
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • Cox D.R. Regression models and life-tables (with discussion). J. R. Stat. Soc. Ser. B 1972, 34(2):187-220.
    • (1972) J. R. Stat. Soc. Ser. B , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 13
    • 17544401077 scopus 로고    scopus 로고
    • On the problem of using 'optimal' cutpoints in the assessment of quantitative prognostic factors
    • Holländer N., Schumacher M. On the problem of using 'optimal' cutpoints in the assessment of quantitative prognostic factors. Onkologie 2001, 24(2):194-199.
    • (2001) Onkologie , vol.24 , Issue.2 , pp. 194-199
    • Holländer, N.1    Schumacher, M.2
  • 14
    • 33645311528 scopus 로고    scopus 로고
    • The inconsistency of optimal cut-points using two roc based criteria
    • Perkins N.J., Schisterman E.F. The inconsistency of optimal cut-points using two roc based criteria. Am. J. Epidemiol. 2006, 163(7):670-675.
    • (2006) Am. J. Epidemiol. , vol.163 , Issue.7 , pp. 670-675
    • Perkins, N.J.1    Schisterman, E.F.2
  • 15
    • 2442682859 scopus 로고    scopus 로고
    • Presentation of multivariate data for clinical use. the Framingham study risk score functions
    • Sullivan L.M., Massaro J.M., D'Agostino R.B. Presentation of multivariate data for clinical use. the Framingham study risk score functions. Stat. Med. 2004, 23(10):1631-1660.
    • (2004) Stat. Med. , vol.23 , Issue.10 , pp. 1631-1660
    • Sullivan, L.M.1    Massaro, J.M.2    D'Agostino, R.B.3
  • 17
    • 78650650451 scopus 로고    scopus 로고
    • Adaptive index models for marker-based risk stratification
    • Tian L., Tibshirani R. Adaptive index models for marker-based risk stratification. Biostatistics 2011, 12(1):68-86.
    • (2011) Biostatistics , vol.12 , Issue.1 , pp. 68-86
    • Tian, L.1    Tibshirani, R.2
  • 18
    • 78649486389 scopus 로고    scopus 로고
    • Rule-extraction from support vector machines. a review
    • Barakat N.H., Bradley A.P. Rule-extraction from support vector machines. a review. Neurocomputing 2010, 74:178-190.
    • (2010) Neurocomputing , vol.74 , pp. 178-190
    • Barakat, N.H.1    Bradley, A.P.2
  • 21
    • 0031475524 scopus 로고    scopus 로고
    • Predicting survival probabilities with semiparametric transformation models
    • Cheng S.C., Wei L.J., Ying Z. Predicting survival probabilities with semiparametric transformation models. J. Am. Stat. Assoc. 1997, 92(437):227-235.
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.437 , pp. 227-235
    • Cheng, S.C.1    Wei, L.J.2    Ying, Z.3
  • 22
    • 0002266120 scopus 로고
    • Partial likelihood in transformation models with censored data
    • Dabrowska D.M., Doksum K.A. Partial likelihood in transformation models with censored data. Scand. J. Stat. 1988, 15(1):1-23.
    • (1988) Scand. J. Stat. , vol.15 , Issue.1 , pp. 1-23
    • Dabrowska, D.M.1    Doksum, K.A.2
  • 23
    • 1542784241 scopus 로고    scopus 로고
    • Reappraising medfly longevity. a quantile regression survival analysis
    • Koenker R., Geling O. Reappraising medfly longevity. a quantile regression survival analysis. J. Am. Stat. Assoc. 2001, 96:458-468.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 458-468
    • Koenker, R.1    Geling, O.2
  • 24
    • 73849131792 scopus 로고    scopus 로고
    • Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA
    • Alzate C., Suykens J.A.K. Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32(2):335-347.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.2 , pp. 335-347
    • Alzate, C.1    Suykens, J.A.K.2
  • 25
    • 33845382806 scopus 로고
    • Nonparametric estimation from incomplete observations
    • Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53:457-481.
    • (1958) J. Am. Stat. Assoc. , vol.53 , pp. 457-481
    • Kaplan, E.L.1    Meier, P.2
  • 26
    • 0001425735 scopus 로고
    • Recovery of information and adjustment for dependent censoring using surrogate markers
    • Robins J.M., Rotnitzky A. Recovery of information and adjustment for dependent censoring using surrogate markers. AIDS Epidemiol. Methodol. Issues 1992, 297-331.
    • (1992) AIDS Epidemiol. Methodol. Issues , pp. 297-331
    • Robins, J.M.1    Rotnitzky, A.2
  • 27
    • 34250655441 scopus 로고    scopus 로고
    • CVX: Matlab software for disciplined convex programming, version 1.21, April
    • M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21, April 2011.
    • (2011)
    • Grant, M.1    Boyd, S.2
  • 32
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin L.I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. Nonlinear Phenomena 1992, 60(1-4):259-268.
    • (1992) Physica D. Nonlinear Phenomena , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 34
    • 84937915930 scopus 로고    scopus 로고
    • Convex clustering shrinkage
    • Workshop on Statistics and Optimization of Clustering (PASCAL)
    • K. Pelckmans, J. De Brabanter, J.A.K. Suykens, B. De Moor, Convex clustering shrinkage, in: Workshop on Statistics and Optimization of Clustering (PASCAL), 2005.
    • (2005)
    • Pelckmans, K.1    De Brabanter, J.2    Suykens, J.A.K.3    De Moor, B.4
  • 35
    • 0035596127 scopus 로고    scopus 로고
    • The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average
    • Satten G.A., Datta S. The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average. Am. Stat. 2001, 55(3):207-210.
    • (2001) Am. Stat. , vol.55 , Issue.3 , pp. 207-210
    • Satten, G.A.1    Datta, S.2
  • 36
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S., Hosmer D.W. A review of goodness of fit statistics for use in the development of logistic regression models. Am. J. Epidemiol. 1982, 116(1):92-106.
    • (1982) Am. J. Epidemiol. , vol.116 , Issue.1 , pp. 92-106
    • Lemeshow, S.1    Hosmer, D.W.2
  • 37
    • 56349171615 scopus 로고    scopus 로고
    • Evaluation of prognostic models: discrimination and calibration performance
    • Computational Intelligence in Medicine
    • A.F.G. Taktak, A. Eleuteri, S.P. Lake, A.C. Fisher, Evaluation of prognostic models: discrimination and calibration performance, in: Computational Intelligence in Medicine, 2007.
    • (2007)
    • Taktak, A.F.G.1    Eleuteri, A.2    Lake, S.P.3    Fisher, A.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.