-
1
-
-
16444374148
-
What makes a good clinical decision support system
-
G P Percell. What makes a good clinical decision support system. British Medical Journal, 330:740–741, 2005.
-
(2005)
British Medical Journal
, vol.330
, pp. 740-741
-
-
Percell, G.P.1
-
2
-
-
17144362818
-
Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success
-
K Kawamoto, C A Houlihan, E A Balas, and D F Lobach. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journal, 330:765–773, 2005.
-
(2005)
British Medical Journal
, vol.330
, pp. 765-773
-
-
Kawamoto, K.1
Houlihan, C.A.2
Balas, E.A.3
Lobach, D.F.4
-
3
-
-
67649603081
-
Improving medication use and outcomes with clinical decision support: A step-by-step guide
-
Chicago, IL
-
J A Osheroff. Improving medication use and outcomes with clinical decision support: a step-by-step guide. Healthcare Information and Management Systems Society, Chicago, IL, 2009.
-
(2009)
Healthcare Information and Management Systems Society
-
-
Osheroff, J.A.1
-
4
-
-
2442682859
-
Presentation of multivariate data for clinical use: The framingham study risk score functions
-
L M Sullivan, J M Massaro, and R B D’Agostino. Presentation of multivariate data for clinical use: The framingham study risk score functions. Statistics in Medicine, 23(10):1631–1660, 2004.
-
(2004)
Statistics in Medicine
, vol.23
, Issue.10
, pp. 1631-1660
-
-
Sullivan, L.M.1
Massaro, J.M.2
D’Agostino, R.B.3
-
5
-
-
79955836082
-
Learning Transforma- tion Models for Ranking and Survival Analysis
-
V Van Belle, K Pelckmans, J A K Suykens, and S Van Huffel. Learning Transforma- tion Models for Ranking and Survival Analysis. Journal of Machine Learning Research, 12:819–862, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 819-862
-
-
Van Belle, V.1
Pelckmans, K.2
Suykens, J.A.3
Van Huffel, S.4
-
6
-
-
80052431188
-
Support vector methods for survival analysis: A comparison between ranking and regression approaches
-
V Van Belle, K Pelckmans, S Van Huffel, and J A K Suykens. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artificial Intelligence in Medicine, 53(2):107–118, 2011.
-
(2011)
Artificial Intelligence in Medicine
, vol.53
, Issue.2
, pp. 107-118
-
-
Van Belle, V.1
Pelckmans, K.2
Van Huffel, S.3
Suykens, J.A.4
-
7
-
-
84947801556
-
-
Technical report, 10-170, ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2010. Submitted for publication
-
V Van Belle, B Van Calster, D Timmerman, T Bourne, C Bottomley, L Valentin, P Neven, S Van Huffel, J A K Suykens, and S Boyd. A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology. Technical report, 10-170, ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2010. Submitted for publication.
-
A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology
-
-
Van Belle, V.1
Van Calster, B.2
Timmerman, D.3
Bourne, T.4
Bottomley, C.5
Valentin, L.6
Neven, P.7
Van Huffel, S.8
Suykens, J.A.9
Boyd, S.10
-
10
-
-
44049111982
-
Nonlinear total variation based noise removal algo- rithms
-
L I Rudin, S Osher, and E Fatemi. Nonlinear total variation based noise removal algo- rithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.
-
(1992)
Physica D: Nonlinear Phenomena
, vol.60
, Issue.1-4
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
12
-
-
25444441746
-
Primal-dual monotone kernel regression
-
K Pelckmans, M Espinoza, J De Brabanter, J A K Suykens, and B De Moor. Primal-dual monotone kernel regression. Neural Processing Letters, 22(2):171–182, 2005.
-
(2005)
Neural Processing Letters
, vol.22
, Issue.2
, pp. 171-182
-
-
Pelckmans, K.1
Espinoza, M.2
De Brabanter, J.3
Suykens, J.A.4
De Moor, B.5
-
13
-
-
0026808390
-
The Nottingham Prognostic Index in primary breast cancer
-
M Galea, R Blamey, C Elston, and I Ellis. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Research and Treatment, 22(3):207–219, 1992.
-
(1992)
Breast Cancer Research and Treatment
, vol.22
, Issue.3
, pp. 207-219
-
-
Galea, M.1
Blamey, R.2
Elston, C.3
Ellis, I.4
-
14
-
-
77957971149
-
Qualitative assessment of the progesterone receptor and HER-2 improve the Nottingham Prognostic Index for short term breast cancer prognosis
-
V Van Belle, B Van Calster, O Brouckaert, I Vanden Bempt, S Pintens, R Paridaens, F Amant, K Leunen, A Smeets, R Drijkoningen, H Wildiers, M R Christiaens, I Vergote, S Van Huffel, and P Neven. Qualitative assessment of the progesterone receptor and HER-2 improve the Nottingham Prognostic Index for short term breast cancer prognosis. Journal of Clinical Oncology, 28(27):4129–4134, 2010.
-
(2010)
Journal of Clinical Oncology
, vol.28
, Issue.27
, pp. 4129-4134
-
-
Van Belle, V.1
Van Calster, B.2
Brouckaert, O.3
Vanden Bempt, I.4
Pintens, S.5
Paridaens, R.6
Amant, F.7
Leunen, K.8
Smeets, A.9
Drijkoningen, R.10
Wildiers, H.11
Christiaens, M.R.12
Vergote, I.13
Van Huffel, S.14
Neven, P.15
|