메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 819-862

Learning transformation models for ranking and survival analysis

Author keywords

Ordinal regression; Preference learning; Ranking models; Support vector machines; Survival analysis

Indexed keywords

ADDITIVE MODELS; AREA UNDER THE CURVES; BENCHMARK DATA; CLINICAL DATA; FAILURE TIME; FINITE SET; HIGH DIMENSIONAL DATA; KERNEL MACHINE; LIPSCHITZ; MACHINE-LEARNING; MONOTONE TRANSFORMATION; NON-LINEAR; ORDINAL REGRESSION; PREFERENCE LEARNING; PRIMAL-DUAL; PROPORTIONAL HAZARDS; QUADRATIC PROGRAMS; RANKING MODELS; RANKING PROBLEMS; RISK MINIMIZATION; STATISTICAL MODELS; SURVIVAL ANALYSIS; SURVIVAL DATA; TRANSFORMATION MODEL;

EID: 79955836082     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (25)

References (54)
  • 1
    • 84898065480 scopus 로고    scopus 로고
    • An efficient reduction of ranking to classification
    • Omnipress
    • N. Ailon and M. Mohri. An efficient reduction of ranking to classification. In COLT, pages 87-98. Omnipress, 2008.
    • (2008) COLT , pp. 87-98
    • Ailon, N.1    Mohri, M.2
  • 3
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • April
    • E. Bair and R. Tibshirani. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biology, 2(4):511-522, April 2004.
    • (2004) PLoS Biology , vol.2 , Issue.4 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 5
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • DOI 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0. CO;2-D
    • E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini. Feedforward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statistics in Medicine, 17 (10): 1169-1186, 1998. (Pubitemid 28221032)
    • (1998) Statistics in Medicine , vol.17 , Issue.10 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 7
    • 0015980662 scopus 로고
    • Covariance analysis of censored survival data
    • N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89-99, 1974.
    • (1974) Biometrics , vol.30 , Issue.11 , pp. 89-99
    • Breslow, N.1
  • 8
    • 0031475524 scopus 로고    scopus 로고
    • Predicting survival probabilities with semiparametric transformation models
    • S.C. Cheng, L.J. Wei, and Z. Ying. Predicting survival probabilities with semiparametric transformation models. Journal of the American Statistical Association, 92(437):227-235, 1997.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.437 , pp. 227-235
    • Cheng, S.C.1    Wei, L.J.2    Ying, Z.3
  • 13
  • 14
    • 0002266120 scopus 로고
    • Partial likelihood in transformation models with censored data
    • D.M. Dabrowska and K.A. Doksum. Partial likelihood in transformation models with censored data. Scandinavian Journal of Statistics, 15(1):1-23, 1988.
    • (1988) Scandinavian Journal of Statistics , vol.15 , Issue.1 , pp. 1-23
    • Dabrowska, D.M.1    Doksum, K.A.2
  • 15
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • P.H. Eilers and B.D. Marx. Flexible smoothing with B-splines and penalties. Statistical Science, 11:89-121, 1996. (Pubitemid 126706128)
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 17
    • 0023034110 scopus 로고
    • A proportional hazards model for interval-censored failure time data
    • D.M. Finkelstein. A proportional hazards model for interval-censored failure time data. Biometrics, 42:845-854, 1986. (Pubitemid 17134903)
    • (1986) Biometrics , vol.42 , Issue.4 , pp. 845-854
    • Finkelstein, D.M.1
  • 18
    • 0020555461 scopus 로고
    • Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update
    • B. Fisher, M. Bauer, L. Wickerham, C.K. Redmong, and E.R. Fisher. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer, 52(9):1551-1557, 1983. (Pubitemid 13018271)
    • (1983) Cancer , vol.52 , Issue.9 , pp. 1551-1557
    • Fisher, B.1    Bauer, M.2    Wickerham, D.L.3
  • 20
    • 9444252359 scopus 로고    scopus 로고
    • Pairwise preference learning and ranking
    • Machine Learning: ECML 2003
    • J. Furnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In Proceedings of the European Conference on Machine Learning 2003, Cavtat-Dubrovnik, pages 145-156. Springer-Verlag, 2003. (Pubitemid 37230973)
    • (2003) Lecture Notes in Computer Science , Issue.2837 , pp. 145-156
    • Furnkranz, J.1    Hullermeier, E.2
  • 22
    • 0021135218 scopus 로고
    • Regression modeling strategies for improved prognostic prediction
    • F. Harrell, K. Klee, R. Califf, D. Pryor, and R. Rosati. Regression modeling strategies for improved prognostic prediction. Statistics in Medicine, 3(2):143-152, 1984.
    • (1984) Statistics in Medicine , vol.3 , Issue.2 , pp. 143-152
    • Harrell, F.1    Klee, K.2    Califf, R.3    Pryor, D.4    Rosati, R.5
  • 24
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • P. Heagerty, T. Lumley, and M. Pepe. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 56(2):337-344, 2000. (Pubitemid 30422619)
    • (2000) Biometrics , vol.56 , Issue.2 , pp. 337-344
    • Heagerty, P.J.1    Lumley, T.2    Pepe, M.S.3
  • 26
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Smola, Bartlett, Schoelkopf, and Schuurmans, editors
    • R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Smola, Bartlett, Schoelkopf, and Schuurmans, editors, Advances in Large Margin Classifiers, 2000.
    • (2000) Advances in Large Margin Classifiers
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 27
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved akaike information criterion
    • C. M. Hurvich, J.S. Simonoff, and C.L. Tsai. Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. Journal ofthe Royal Statistical Society: Series B, 60:371-293, 1998.
    • (1998) Journal Ofthe Royal Statistical Society: Series B , vol.60 , pp. 371-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.L.3
  • 29
    • 0342472837 scopus 로고    scopus 로고
    • Applying a neural network to prostate cancer survival data
    • N. Lavrac, R. Keravnou, and B. Zupan, editors, Kluwer, Boston
    • M.W. Kattan, H. Ishida, P.T. Scardino, and J.R. Beck. Applying a neural network to prostate cancer survival data. In N. Lavrac, R. Keravnou, and B. Zupan, editors, Intelligent Data Analysis in Medicine and Pharmacology, pages 295-306. Kluwer, Boston, 1997.
    • (1997) Intelligent Data Analysis in Medicine and Pharmacology , pp. 295-306
    • Kattan, M.W.1    Ishida, H.2    Scardino, P.T.3    Beck, J.R.4
  • 30
    • 1542784241 scopus 로고    scopus 로고
    • Reappraising medfly longevity: A quantile regression survival analysis
    • R. Koenker and O. Geling. Reappraising medfly longevity: A quantile regression survival analysis. Journal of the American Statistical Association, 96:458-468, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 458-468
    • Koenker, R.1    Geling, O.2
  • 31
    • 0036838202 scopus 로고    scopus 로고
    • Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy
    • DOI 10.1023/A:1020228620173
    • P.J. Lamy, P. Pujol, S. Thezenas, A. Kramar, P. Rouanet, F. Guilleux, and J. Grenier. Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy. Breast cancer reasearch and treatment, 76(1):65-71, 2002. (Pubitemid 35178629)
    • (2002) Breast Cancer Research and Treatment , vol.76 , Issue.1 , pp. 65-71
    • Lamy, P.-J.1    Pujol, P.2    Thezenas, S.3    Kramar, A.4    Rouanet, P.5    Guilleux, F.6    Grenier, J.7
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D.J.C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computing, 4(3):448-472, 1992.
    • (1992) Neural Computing , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 39
    • 0018974652 scopus 로고
    • Relationship of presence of progesterone receptors to prognosis in early breast cancer
    • M.F. Pichon, C. Pallud, M. Brunet, and E. Milgrom. Relationship of presence of progesterone receptors to prognosis in early breast cancer. Cancer Research, 40:3357-3360, 1980. (Pubitemid 10043553)
    • (1980) Cancer Research , vol.40 , Issue.9 , pp. 3357-3360
    • Pichon, M.F.1    Pallud, C.2    Brunet, M.3    Milgrom, E.4
  • 41
    • 0001067763 scopus 로고    scopus 로고
    • Rank-based inference in the proportional hazards model for interval censored data
    • G.A. Satten. Rank-based inference in the proportional hazards model for interval censored data. Biometrika, 83:355-370, 1996.
    • (1996) Biometrika , vol.83 , pp. 355-370
    • Satten, G.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.