-
1
-
-
84898065480
-
An efficient reduction of ranking to classification
-
Omnipress
-
N. Ailon and M. Mohri. An efficient reduction of ranking to classification. In COLT, pages 87-98. Omnipress, 2008.
-
(2008)
COLT
, pp. 87-98
-
-
Ailon, N.1
Mohri, M.2
-
2
-
-
0003572485
-
-
Springer-Verlag, New York
-
P.K. Andersen, O. Borgan, R.D. Gill, and N. Leiding. Statistical Models based on Counting Processes. Springer-Verlag, New York, 1993.
-
(1993)
Statistical Models Based on Counting Processes
-
-
Andersen, P.K.1
Borgan, O.2
Gill, R.D.3
Leiding, N.4
-
3
-
-
19344375744
-
Semi-supervised methods to predict patient survival from gene expression data
-
April
-
E. Bair and R. Tibshirani. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biology, 2(4):511-522, April 2004.
-
(2004)
PLoS Biology
, vol.2
, Issue.4
, pp. 511-522
-
-
Bair, E.1
Tibshirani, R.2
-
4
-
-
33645527646
-
Prediction by supervised principal components
-
DOI 10.1198/016214505000000628
-
R. Bair, T. Hastie, R Debashis, and R. Tibshirani. Prediction by supervised principal components. Journal of the American Statistical Association, 101:119-137, 2006. (Pubitemid 43500030)
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 119-137
-
-
Bair, E.1
Hastie, T.2
Paul, D.3
Tibshirani, R.4
-
5
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
-
DOI 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0. CO;2-D
-
E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini. Feedforward neural networks for the analysis of censored survival data: a partial logistic regression approach. Statistics in Medicine, 17 (10): 1169-1186, 1998. (Pubitemid 28221032)
-
(1998)
Statistics in Medicine
, vol.17
, Issue.10
, pp. 1169-1186
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
Marubini, E.4
-
6
-
-
34548565944
-
Predicting survival from microarray data - A comparative study
-
DOI 10.1093/bioinformatics/btm305
-
H.M.M. Bøvelstad, S. Nygård, H.L.L. Størvold, M. Aldrin, O. Borgan, A. Frigessi, and O.C.C. Lingjaerde. Predicting survival from microarray data - a comparative study. Bioinformatics, 23 (16):2080-2087, 2007. (Pubitemid 47394107)
-
(2007)
Bioinformatics
, vol.23
, Issue.16
, pp. 2080-2087
-
-
Bovelstad, H.M.1
Nygard, S.2
Storvold, H.L.3
Aldrin, M.4
Borgan, O.5
Frigessi, A.6
Lingjaerde, O.C.7
-
7
-
-
0015980662
-
Covariance analysis of censored survival data
-
N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89-99, 1974.
-
(1974)
Biometrics
, vol.30
, Issue.11
, pp. 89-99
-
-
Breslow, N.1
-
8
-
-
0031475524
-
Predicting survival probabilities with semiparametric transformation models
-
S.C. Cheng, L.J. Wei, and Z. Ying. Predicting survival probabilities with semiparametric transformation models. Journal of the American Statistical Association, 92(437):227-235, 1997.
-
(1997)
Journal of the American Statistical Association
, vol.92
, Issue.437
, pp. 227-235
-
-
Cheng, S.C.1
Wei, L.J.2
Ying, Z.3
-
13
-
-
0000336139
-
Regression models and life-tables (with discussion)
-
D.R. Cox. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B, 34(2): 187-220, 1972.
-
(1972)
Journal of the Royal Statistical Society, Series B
, vol.34
, Issue.2
, pp. 187-220
-
-
Cox, D.R.1
-
14
-
-
0002266120
-
Partial likelihood in transformation models with censored data
-
D.M. Dabrowska and K.A. Doksum. Partial likelihood in transformation models with censored data. Scandinavian Journal of Statistics, 15(1):1-23, 1988.
-
(1988)
Scandinavian Journal of Statistics
, vol.15
, Issue.1
, pp. 1-23
-
-
Dabrowska, D.M.1
Doksum, K.A.2
-
15
-
-
25444532788
-
Flexible smoothing with B-splines and penalties
-
P.H. Eilers and B.D. Marx. Flexible smoothing with B-splines and penalties. Statistical Science, 11:89-121, 1996. (Pubitemid 126706128)
-
(1996)
Statistical Science
, vol.11
, Issue.2
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.D.2
-
17
-
-
0023034110
-
A proportional hazards model for interval-censored failure time data
-
D.M. Finkelstein. A proportional hazards model for interval-censored failure time data. Biometrics, 42:845-854, 1986. (Pubitemid 17134903)
-
(1986)
Biometrics
, vol.42
, Issue.4
, pp. 845-854
-
-
Finkelstein, D.M.1
-
18
-
-
0020555461
-
Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update
-
B. Fisher, M. Bauer, L. Wickerham, C.K. Redmong, and E.R. Fisher. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer, 52(9):1551-1557, 1983. (Pubitemid 13018271)
-
(1983)
Cancer
, vol.52
, Issue.9
, pp. 1551-1557
-
-
Fisher, B.1
Bauer, M.2
Wickerham, D.L.3
-
19
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4(6):933-969, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.4
, Issue.6
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
20
-
-
9444252359
-
Pairwise preference learning and ranking
-
Machine Learning: ECML 2003
-
J. Furnkranz and E. Hüllermeier. Pairwise preference learning and ranking. In Proceedings of the European Conference on Machine Learning 2003, Cavtat-Dubrovnik, pages 145-156. Springer-Verlag, 2003. (Pubitemid 37230973)
-
(2003)
Lecture Notes in Computer Science
, Issue.2837
, pp. 145-156
-
-
Furnkranz, J.1
Hullermeier, E.2
-
22
-
-
0021135218
-
Regression modeling strategies for improved prognostic prediction
-
F. Harrell, K. Klee, R. Califf, D. Pryor, and R. Rosati. Regression modeling strategies for improved prognostic prediction. Statistics in Medicine, 3(2):143-152, 1984.
-
(1984)
Statistics in Medicine
, vol.3
, Issue.2
, pp. 143-152
-
-
Harrell, F.1
Klee, K.2
Califf, R.3
Pryor, D.4
Rosati, R.5
-
24
-
-
0033936550
-
Time-dependent ROC curves for censored survival data and a diagnostic marker
-
P. Heagerty, T. Lumley, and M. Pepe. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 56(2):337-344, 2000. (Pubitemid 30422619)
-
(2000)
Biometrics
, vol.56
, Issue.2
, pp. 337-344
-
-
Heagerty, P.J.1
Lumley, T.2
Pepe, M.S.3
-
25
-
-
79955842516
-
Learning preference relations for information retrieval
-
R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer. Learning preference relations for information retrieval. In Proceedings of the Fifteenth Conference of the American Association for Artificial Intelligence, pages 1-4, 1998.
-
(1998)
Proceedings of the Fifteenth Conference of the American Association for Artificial Intelligence
, pp. 1-4
-
-
Herbrich, R.1
Graepel, T.2
Bollmann-Sdorra, P.3
Obermayer, K.4
-
26
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Smola, Bartlett, Schoelkopf, and Schuurmans, editors
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Smola, Bartlett, Schoelkopf, and Schuurmans, editors, Advances in Large Margin Classifiers, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
27
-
-
0001354983
-
Smoothing parameter selection in nonparametric regression using an improved akaike information criterion
-
C. M. Hurvich, J.S. Simonoff, and C.L. Tsai. Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. Journal ofthe Royal Statistical Society: Series B, 60:371-293, 1998.
-
(1998)
Journal Ofthe Royal Statistical Society: Series B
, vol.60
, pp. 371-293
-
-
Hurvich, C.M.1
Simonoff, J.S.2
Tsai, C.L.3
-
29
-
-
0342472837
-
Applying a neural network to prostate cancer survival data
-
N. Lavrac, R. Keravnou, and B. Zupan, editors, Kluwer, Boston
-
M.W. Kattan, H. Ishida, P.T. Scardino, and J.R. Beck. Applying a neural network to prostate cancer survival data. In N. Lavrac, R. Keravnou, and B. Zupan, editors, Intelligent Data Analysis in Medicine and Pharmacology, pages 295-306. Kluwer, Boston, 1997.
-
(1997)
Intelligent Data Analysis in Medicine and Pharmacology
, pp. 295-306
-
-
Kattan, M.W.1
Ishida, H.2
Scardino, P.T.3
Beck, J.R.4
-
31
-
-
0036838202
-
Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy
-
DOI 10.1023/A:1020228620173
-
P.J. Lamy, P. Pujol, S. Thezenas, A. Kramar, P. Rouanet, F. Guilleux, and J. Grenier. Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy. Breast cancer reasearch and treatment, 76(1):65-71, 2002. (Pubitemid 35178629)
-
(2002)
Breast Cancer Research and Treatment
, vol.76
, Issue.1
, pp. 65-71
-
-
Lamy, P.-J.1
Pujol, P.2
Thezenas, S.3
Kramar, A.4
Rouanet, P.5
Guilleux, F.6
Grenier, J.7
-
32
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
D.J.C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computing, 4(3):448-472, 1992.
-
(1992)
Neural Computing
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
35
-
-
42449139466
-
Partial least squares Cox regression for genome-wide data
-
S. Nygård, O. Borgan, O. Lingjærde, and H. Storvold. Partial least squares Cox regression for genome-wide data. Lifetime Data Analysis, 14(2):179-195, 2008.
-
(2008)
Lifetime Data Analysis
, vol.14
, Issue.2
, pp. 179-195
-
-
Nygård, S.1
Borgan, O.2
Lingjærde, O.3
Storvold, H.4
-
36
-
-
25444441746
-
Primal-dual monotone kernel regression
-
DOI 10.1007/s11063-005-5264-1
-
K. Pelckmans, M. Espinoza, J. De Brabanter, J.A.K. Suykens, and B. De Moor. Primal-dual monotone kernel regression. Neural Processing Letters, 22(2):171-182, 2005a. (Pubitemid 41367335)
-
(2005)
Neural Processing Letters
, vol.22
, Issue.2
, pp. 171-182
-
-
Pelckmans, K.1
Espinoza, M.2
De Brabanter, J.3
Suykens, J.A.K.4
De Moor, B.5
-
37
-
-
27644538407
-
-
(L. Wang, ed.) Springer
-
K. Pelckmans, I. Goethals, J. De Brabanter, J.A.K. Suykens, and B. De Moor. Componentwise Least Squares Support Vector Machines, chapter in Support Vector Machines: Theory and Applications, pages 77-98. (L. Wang, ed.), Springer, 2005b.
-
(2005)
Componentwise Least Squares Support Vector Machines, Chapter in Support Vector Machines: Theory and Applications
, pp. 77-98
-
-
Pelckmans, K.1
Goethals, I.2
De Brabanter, J.3
Suykens, J.A.K.4
De Moor, B.5
-
39
-
-
0018974652
-
Relationship of presence of progesterone receptors to prognosis in early breast cancer
-
M.F. Pichon, C. Pallud, M. Brunet, and E. Milgrom. Relationship of presence of progesterone receptors to prognosis in early breast cancer. Cancer Research, 40:3357-3360, 1980. (Pubitemid 10043553)
-
(1980)
Cancer Research
, vol.40
, Issue.9
, pp. 3357-3360
-
-
Pichon, M.F.1
Pallud, C.2
Brunet, M.3
Milgrom, E.4
-
40
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
DOI 10.1056/NEJMoa012914
-
A. Rosenwald, G. Wright, W.C. Chan, J.M. Connors, E. Campo, R.I. Fisher, R.D. Gascoyne, H.K. Muller-Hermelink, R.B. Smeland, J.M. Giltnane, E.M. Hurt, H. Zhao, L. Averett, and L. Yang. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The New England Journal of Medicine, 346(25):1937-1947, 2002. (Pubitemid 34651353)
-
(2002)
New England Journal of Medicine
, vol.346
, Issue.25
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyne, R.D.7
Muller-Hermelink, H.K.8
Smeland, E.B.9
Giltnane, J.M.10
Hurt, E.M.11
Zhao, H.12
Averett, L.13
Yang, L.14
Wilson, W.H.15
Jaffe, E.S.16
Simon, R.17
Klausner, R.D.18
Powell, J.19
Duffey, P.L.20
Longo, D.L.21
Greiner, T.C.22
Weisenburger, D.D.23
Sanger, W.G.24
Dave, B.J.25
Lynch, J.C.26
Vose, J.27
Armitage, J.O.28
Montserrat, E.29
Lopez-Guillermo, A.30
Grogan, T.M.31
Miller, T.P.32
Leblanc, M.33
Ott, G.34
Kvaloy, S.35
Delabie, J.36
Holte, H.37
Krajci, P.38
Stokke, T.39
Staudt, L.M.40
more..
-
41
-
-
0001067763
-
Rank-based inference in the proportional hazards model for interval censored data
-
G.A. Satten. Rank-based inference in the proportional hazards model for interval censored data. Biometrika, 83:355-370, 1996.
-
(1996)
Biometrika
, vol.83
, pp. 355-370
-
-
Satten, G.A.1
-
42
-
-
0028080742
-
Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients
-
M. Schumacher, G. Basert, H. Bojar, K. Huebner, M. Olschewski, W. Sauerbrei, C. Schmoor, C. Beyerle, R.L.A. Neumann, and H.F. Rauschecker. Randomized 2 × 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. Journal of Clinical Oncology, 12, 1994.
-
(1994)
Journal of Clinical Oncology
, pp. 12
-
-
Schumacher, M.1
Basert, G.2
Bojar, H.3
Huebner, K.4
Olschewski, M.5
Sauerbrei, W.6
Schmoor, C.7
Beyerle, C.8
Neumann, R.L.A.9
Rauschecker, H.F.10
-
44
-
-
0037478605
-
Repeated observation of breast tumor subtypes in independent gene expression data sets
-
DOI 10.1073/pnas.0932692100
-
T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J.S. Marron, A. Nobel, S. Deng, H. Johnsen, R. Pesich, S. Geisler, J. Demeter, C.M. Perou, P.E. Lonning, P.O. Brown, A. Borresen-Dale, and D. Botstein. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100(14):8418-8423, 2003. (Pubitemid 36842560)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.14
, pp. 8418-8423
-
-
Sorlie, T.1
Tibshirani, R.2
Parker, J.3
Hastie, T.4
Marron, J.S.5
Nobel, A.6
Deng, S.7
Johnsen, H.8
Pesich, R.9
Geisler, S.10
Demeter, J.11
Perou, C.M.12
Lonning, P.E.13
Brown, P.O.14
Borresen-Dale, A.-L.15
Botstein, D.16
-
45
-
-
0037695279
-
-
World Scientific, Singapore
-
J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares Support Vector Machines. World Scientific, Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
48
-
-
67549124946
-
Support vector machines for survival analysis
-
Plymouth (UK), July
-
V. Van Belle, K. Pelckmans, J.A.K. Suykens, and S. Van Huffel. Support vector machines for survival analysis. In Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2007), pages 1-8, Plymouth (UK), July 2007.
-
(2007)
Proceedings of the Third International Conference on Computational Intelligence in Medicine and Healthcare (CIMED 2007)
, pp. 1-8
-
-
Van Belle, V.1
Pelckmans, K.2
Suykens, J.A.K.3
Van Huffel, S.4
-
49
-
-
68749114819
-
Survival SVM: A practical scalable algorithm
-
Bruges (Belgium), April
-
V. Van Belle, K. Pelckmans, J.A.K. Suykens, and S. Van Huffel. Survival SVM: a practical scalable algorithm. In Proceedings of the 16th European Symposium on Artificial Neural Networks (ESANN2008), pages 89-94, Bruges (Belgium), April 2008.
-
(2008)
Proceedings of the 16th European Symposium on Artificial Neural Networks (ESANN 2008)
, pp. 89-94
-
-
Van Belle, V.1
Pelckmans, K.2
Suykens, J.A.K.3
Van Huffel, S.4
-
50
-
-
70350602596
-
MINLIP: Efficient learning of transformation models
-
Limassol (Cyprus), September
-
V. Van Belle, K. Pelckmans, J.A.K. Suykens, and S. Van Huffel. MINLIP: Efficient learning of transformation models. In Proceedings of the International Conference on Artificial Neural Networks (ICANN2009), pages 60-69, Limassol (Cyprus), September 2009.
-
(2009)
Proceedings of the International Conference on Artificial Neural Networks (ICANN 2009)
, pp. 60-69
-
-
Van Belle, V.1
Pelckmans, K.2
Suykens, J.A.K.3
Van Huffel, S.4
-
51
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
DOI 10.1056/NEJMoa021967
-
M.J. van de Vijver, L.J. van't Veer, and H. Dai. A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25):1999-2009, 2002. (Pubitemid 35461656)
-
(2002)
New England Journal of Medicine
, vol.347
, Issue.25
, pp. 1999-2009
-
-
Van De Vijver, M.J.1
He, Y.D.2
Van 'T Veer, L.J.3
Dai, H.4
Hart, A.A.M.5
Voskuil, D.W.6
Schreiber, G.J.7
Peterse, J.L.8
Roberts, C.9
Marton, M.J.10
Parrish, M.11
Atsma, D.12
Witteveen, A.13
Glas, A.14
Delahaye, L.15
Van Der Velde, T.16
Bartelink, H.17
Rodenhuis, S.18
Rutgers, E.T.19
Friend, S.H.20
Bernards, R.21
more..
-
52
-
-
33748631068
-
Cross-validated Cox regression on microarray gene expression data
-
DOI 10.1002/sim.2353
-
H.C. van Houwelingen, T. Bruinsma, A.A.M. Hart, L.J. van't Veer, and L.F.A. Wessels. Cross- validated cox regression on microarray gene expression data. Statistics in Medicine, 25(18): 3201-3216, 2006. (Pubitemid 44377341)
-
(2006)
Statistics in Medicine
, vol.25
, Issue.18
, pp. 3201-3216
-
-
Van Houwelingen, H.C.1
Bruinsma, T.2
Hart, A.A.M.3
Van't Veer, L.J.4
Wessels, L.F.A.5
-
54
-
-
12744279334
-
Modeling the effect of tumor size in early breast cancer
-
C. Verschraegen, C. Vihn-Hung, G. Cserni, R. Gordon, M.E. Royce, G. Vlastos, P. Tai, and G. Storme. Modeling the effect of tumor size in early breast cancer. Annals of Surgery, 241 (2):309-318, 2005.
-
(2005)
Annals of Surgery
, vol.241
, Issue.2
, pp. 309-318
-
-
Verschraegen, C.1
Vihn-Hung, C.2
Cserni, G.3
Gordon, R.4
Royce, M.E.5
Vlastos, G.6
Tai, P.7
Storme, G.8
|