-
1
-
-
1642265093
-
Cortical control of microtubule stability and polarization
-
Gundersen GG, Gomes ER, Wen Y. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol. 2004;16(1):106-112.
-
(2004)
Curr Opin Cell Biol
, vol.16
, Issue.1
, pp. 106-112
-
-
Gundersen, G.G.1
Gomes, E.R.2
Wen, Y.3
-
2
-
-
39149121834
-
Tubulin modifications and their cellular functions
-
Hammond JW, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol. 2008;20(1):71-76.
-
(2008)
Curr Opin Cell Biol
, vol.20
, Issue.1
, pp. 71-76
-
-
Hammond, J.W.1
Cai, D.2
Verhey, K.J.3
-
3
-
-
54549102288
-
Beyond polymer polarity: How the cytoskeleton builds a polarized cell
-
Li R, Gundersen GG. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol. 2008;9(11):860-873.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.11
, pp. 860-873
-
-
Li, R.1
Gundersen, G.G.2
-
4
-
-
79951552971
-
Microtubule tip-interacting proteins: A view from both ends
-
Jiang K, Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr Opin Cell Biol. 2011;23(1):94-101.
-
(2011)
Curr Opin Cell Biol
, vol.23
, Issue.1
, pp. 94-101
-
-
Jiang, K.1
Akhmanova, A.2
-
6
-
-
0037452096
-
Dynamics and mechanics of the microtubule plus end
-
Howard J, Hyman AA. Dynamics and mechanics of the microtubule plus end. Nature. 2003; 422(6933):753-758.
-
(2003)
Nature
, vol.422
, Issue.6933
, pp. 753-758
-
-
Howard, J.1
Hyman, A.A.2
-
7
-
-
0035797905
-
Cdc42, dynein, and dynactin regulate MTOC reorientation independent of rho-regulated microtubule stabilization
-
Palazzo AF, Joseph HL, Chen YJ, et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol. 2001;11(19):1536-1541.
-
(2001)
Curr Biol
, vol.11
, Issue.19
, pp. 1536-1541
-
-
Palazzo, A.F.1
Joseph, H.L.2
Chen, Y.J.3
-
8
-
-
64749115790
-
Mammalian end binding proteins control persistent microtubule growth
-
Komarova Y, De Groot CO, Grigoriev I, et al. Mammalian end binding proteins control persistent microtubule growth. J Cell Biol. 2009; 184(5):691-706.
-
(2009)
J Cell Biol
, vol.184
, Issue.5
, pp. 691-706
-
-
Komarova, Y.1
De Groot, C.O.2
Grigoriev, I.3
-
9
-
-
33846999330
-
Action and interactions at microtubule ends
-
Morrison EE. Action and interactions at microtubule ends. Cell Mol Life Sci. 2007;64(3): 307-317.
-
(2007)
Cell Mol Life Sci
, vol.64
, Issue.3
, pp. 307-317
-
-
Morrison, E.E.1
-
10
-
-
41149156427
-
Tracking the ends: A dynamic protein network controls the fate of microtubule tips
-
Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol. 2008;9(4): 309-322.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.4
, pp. 309-322
-
-
Akhmanova, A.1
Steinmetz, M.O.2
-
11
-
-
20344364415
-
Clips and clasps and cellular dynamics
-
Galjart N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol. 2005;6(6): 487-498.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, Issue.6
, pp. 487-498
-
-
Galjart, N.1
-
12
-
-
0037182581
-
A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization
-
Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol. 2002;157(5):795-806.
-
(2002)
J Cell Biol
, vol.157
, Issue.5
, pp. 795-806
-
-
Helfand, B.T.1
Mikami, A.2
Vallee, R.B.3
Goldman, R.D.4
-
13
-
-
0037175398
-
Cytoplasmic linker proteins promote microtubule rescue in vivo
-
Komarova YA, Akhmanova AS, Kojima S, Galjart N, Borisy GG. Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol. 2002; 159(4):589-599.
-
(2002)
J Cell Biol
, vol.159
, Issue.4
, pp. 589-599
-
-
Komarova, Y.A.1
Akhmanova, A.S.2
Kojima, S.3
Galjart, N.4
Borisy, G.G.5
-
14
-
-
18444369936
-
Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170
-
Fukata M, Watanabe T, Noritake J, et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell. 2002;109(7):873-885.
-
(2002)
Cell
, vol.109
, Issue.7
, pp. 873-885
-
-
Fukata, M.1
Watanabe, T.2
Noritake, J.3
-
15
-
-
0032941748
-
Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism
-
Kreitzer G, Liao G, Gundersen GG. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell. 1999;10(4):1105-1118.
-
(1999)
Mol Biol Cell
, vol.10
, Issue.4
, pp. 1105-1118
-
-
Kreitzer, G.1
Liao, G.2
Gundersen, G.G.3
-
16
-
-
19944429410
-
CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex
-
Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol. 2005;168(1):141-153.
-
(2005)
J Cell Biol
, vol.168
, Issue.1
, pp. 141-153
-
-
Mimori-Kiyosue, Y.1
Grigoriev, I.2
Lansbergen, G.3
-
17
-
-
0021752265
-
Distinct populations of microtubules: Tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo
-
Gundersen GG, Kalnoski MH, Bulinski JC. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell. 1984;38(3):779-789.
-
(1984)
Cell
, vol.38
, Issue.3
, pp. 779-789
-
-
Gundersen, G.G.1
Kalnoski, M.H.2
Bulinski, J.C.3
-
18
-
-
0023371190
-
Postpolymerization detyrosination of alpha-tubulin: A mechanism for subcellular differentiation of microtubules
-
Gundersen GG, Khawaja S, Bulinski JC. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol. 1987; 105(1):251-264.
-
(1987)
J Cell Biol
, vol.105
, Issue.1
, pp. 251-264
-
-
Gundersen, G.G.1
Khawaja, S.2
Bulinski, J.C.3
-
19
-
-
0024453421
-
Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation
-
Gundersen GG, Khawaja S, Bulinski JC. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J Cell Biol. 1989;109(5): 2275-2288.
-
(1989)
J Cell Biol
, vol.109
, Issue.5
, pp. 2275-2288
-
-
Gundersen, G.G.1
Khawaja, S.2
Bulinski, J.C.3
-
20
-
-
0037157845
-
A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport
-
Vaughan PS, Miura P, Henderson M, Byrne B, Vaughan KT. A role for regulated binding of p150(Glued) to microtubule plus ends in organelle transport. J Cell Biol. 2002;158(2):305-319.
-
(2002)
J Cell Biol
, vol.158
, Issue.2
, pp. 305-319
-
-
Vaughan, P.S.1
Miura, P.2
Henderson, M.3
Byrne, B.4
Vaughan, K.T.5
-
21
-
-
0035393707
-
Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis
-
Mialhe A, Lafanechère L, Treilleux I, et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 2001; 61(13):5024-5027.
-
(2001)
Cancer Res
, vol.61
, Issue.13
, pp. 5024-5027
-
-
Mialhe, A.1
Lafanechère, L.2
Treilleux, I.3
-
22
-
-
0036687890
-
Post-translational modifications of cardiac tubulin during chronic heart failure in the rat
-
Belmadani S, Poüs C, Ventura-Clapier R, Fischmeister R, Méry PF. Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem. 2002; 237(1-2):39-46.
-
(2002)
Mol Cell Biochem
, vol.237
, Issue.1-2
, pp. 39-46
-
-
Belmadani, S.1
Poüs, C.2
Ventura-Clapier, R.3
Fischmeister, R.4
Méry, P.F.5
-
23
-
-
20544456820
-
Microtubule plus ends, motors, and traffic of golgi membranes
-
Vaughan KT. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochim Biophys Acta. 2005;1744(3):316-324.
-
(2005)
Biochim Biophys Acta
, vol.1744
, Issue.3
, pp. 316-324
-
-
Vaughan, K.T.1
-
24
-
-
0242625182
-
A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization
-
Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hülskamp M. A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol. 2003; 13(22):1991-1997.
-
(2003)
Curr Biol
, vol.13
, Issue.22
, pp. 1991-1997
-
-
Mathur, J.1
Mathur, N.2
Kernebeck, B.3
Srinivas, B.P.4
Hülskamp, M.5
-
25
-
-
0037448671
-
Cell biology: Tubulin acetylation and cell motility
-
Palazzo A, Ackerman B, Gundersen GG. Cell biology: Tubulin acetylation and cell motility. Nature. 2003;421(6920):230.
-
(2003)
Nature
, vol.421
, Issue.6920
, pp. 230
-
-
Palazzo, A.1
Ackerman, B.2
Gundersen, G.G.3
-
26
-
-
34250848194
-
Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow wallerian degeneration mice: A crucial role of tubulin deacetylation
-
Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience. 2007;147(3): 599-612.
-
(2007)
Neuroscience
, vol.147
, Issue.3
, pp. 599-612
-
-
Suzuki, K.1
Koike, T.2
-
27
-
-
33846930889
-
Microtubule deacetylases, SirT2 and HDAC6, in the nervous system
-
Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res. 2007;32(2):187-195.
-
(2007)
Neurochem Res
, vol.32
, Issue.2
, pp. 187-195
-
-
Southwood, C.M.1
Peppi, M.2
Dryden, S.3
Tainsky, M.A.4
Gow, A.5
-
28
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417(6887):455-458.
-
(2002)
Nature
, vol.417
, Issue.6887
, pp. 455-458
-
-
Hubbert, C.1
Guardiola, A.2
Shao, R.3
-
29
-
-
0023506776
-
Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts
-
Cambray-Deakin MA, Burgoyne RD. Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil Cytoskeleton. 1987;8(3):284-291.
-
(1987)
Cell Motil Cytoskeleton
, vol.8
, Issue.3
, pp. 284-291
-
-
Cambray-Deakin, M.A.1
Burgoyne, R.D.2
-
30
-
-
1842479447
-
Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes
-
Louie RK, Bahmanyar S, Siemers KA, et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci. Mar 1 2004;117(Pt 7):1117-1128.
-
(2004)
J Cell Sci. Mar 1
, vol.117
, pp. 1117-1128
-
-
Louie, R.K.1
Bahmanyar, S.2
Siemers, K.A.3
-
31
-
-
79961135587
-
EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms
-
Aug 1
-
Schroder JM, Larsen J, Komarova Y, et al. EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. J Cell Sci. Aug 1;124(Pt 15):2539-2551.
-
J Cell Sci
, vol.124
, pp. 2539-2551
-
-
Schroder, J.M.1
Larsen, J.2
Komarova, Y.3
-
32
-
-
75749107871
-
Structural and mechanistic insights into microtubule end-binding proteins
-
Feb
-
Slep KC. Structural and mechanistic insights into microtubule end-binding proteins. Curr Opin Cell Biol. Feb;22(1):88-95.
-
Curr Opin Cell Biol
, vol.22
, Issue.1
, pp. 88-95
-
-
Slep, K.C.1
-
33
-
-
0036796793
-
Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome
-
Askham JM, Vaughan KT, Goodson HV, Morrison EE. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell. 2002; 13(10):3627-3645.
-
(2002)
Mol Biol Cell
, vol.13
, Issue.10
, pp. 3627-3645
-
-
Askham, J.M.1
Vaughan, K.T.2
Goodson, H.V.3
Morrison, E.E.4
-
34
-
-
67650535473
-
Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion
-
Zhang T, Zaal KJ, Sheridan J, Mehta A, Gundersen GG, Ralston E. Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci. 2009;122(Pt 9):1401-1409.
-
(2009)
J Cell Sci
, vol.122
, pp. 1401-1409
-
-
Zhang, T.1
Zaal, K.J.2
Sheridan, J.3
Mehta, A.4
Gundersen, G.G.5
Ralston, E.6
-
35
-
-
79953800449
-
Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting
-
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol. 2011; 288:101-165.
-
(2011)
Int Rev Cell Mol Biol
, vol.288
, pp. 101-165
-
-
Davis, G.E.1
Stratman, A.N.2
Sacharidou, A.3
Koh, W.4
-
36
-
-
84155166961
-
Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices
-
Sacharidou A, Stratman AN, Davis GE. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs. 2012;195(1-2):122-143.
-
(2012)
Cells Tissues Organs
, vol.195
, Issue.1-2
, pp. 122-143
-
-
Sacharidou, A.1
Stratman, A.N.2
Davis, G.E.3
-
37
-
-
82755160716
-
Tubulogenesis during blood vessel formation
-
Xu K, Cleaver O. Tubulogenesis during blood vessel formation. Semin Cell Dev Biol. 2011; 22(9):993-1004.
-
(2011)
Semin Cell Dev Biol
, vol.22
, Issue.9
, pp. 993-1004
-
-
Xu, K.1
Cleaver, O.2
-
38
-
-
52049114102
-
In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis
-
Koh W, Stratman AN, Sacharidou A, Davis GE. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 2008;443:83-101.
-
(2008)
Methods Enzymol
, vol.443
, pp. 83-101
-
-
Koh, W.1
Stratman, A.N.2
Sacharidou, A.3
Davis, G.E.4
-
39
-
-
0029967619
-
An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix
-
Davis GE, Camarillo CW. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996;224(1):39-51.
-
(1996)
Exp Cell Res
, vol.224
, Issue.1
, pp. 39-51
-
-
Davis, G.E.1
Camarillo, C.W.2
-
40
-
-
1642564595
-
Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small gtpase rho
-
Bayless KJ, Davis GE. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem. 2004;279(12):11686-11695.
-
(2004)
J Biol Chem
, vol.279
, Issue.12
, pp. 11686-11695
-
-
Bayless, K.J.1
Davis, G.E.2
-
41
-
-
67651121845
-
Endothelial cell lumen and vascular guidance tunnel formation requires mt1-mmp-dependent proteolysis in 3-dimensional collagen matrices
-
Stratman AN, Saunders WB, Sacharidou A, et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood. 2009;114(2):237-247.
-
(2009)
Blood
, vol.114
, Issue.2
, pp. 237-247
-
-
Stratman, A.N.1
Saunders, W.B.2
Sacharidou, A.3
-
42
-
-
69449102133
-
Formation of endothelial lumens requires a coordinated pkcepsilon-, src-, PAK- and raf-kinase-dependent signaling cascade downstream of cdc42 activation
-
Koh W, Sachidanandam K, Stratman AN, et al. Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, PAK- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci. 2009;122(Pt 11): 1812-1822.
-
(2009)
J Cell Sci
, vol.122
, pp. 1812-1822
-
-
Koh, W.1
Sachidanandam, K.2
Stratman, A.N.3
-
43
-
-
78149450610
-
Moderation of calpain activity promotes neovascular integration and lumen formation during vegf-induced pathological angiogenesis
-
Hoang MV, Nagy JA, Fox JE, Senger DR. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis. PLoS ONE. 2010;5(10):e13612.
-
(2010)
Plos ONE
, vol.5
, Issue.10
, pp. e13612
-
-
Hoang, M.V.1
Nagy, J.A.2
Fox, J.E.3
Senger, D.R.4
-
44
-
-
84868677556
-
Biochemistry and cell biology of tau protein in neurofibrillary degeneration
-
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2(7):a006247.
-
(2012)
Cold Spring Harb Perspect Med
, vol.2
, Issue.7
, pp. a006247
-
-
Mandelkow, E.M.1
Mandelkow, E.2
-
45
-
-
67749133983
-
Cytoskeletal pathologies of Alzheimer disease
-
Bamburg JR, Bloom GS. Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton. 2009;66(8):635-649.
-
(2009)
Cell Motil Cytoskeleton
, vol.66
, Issue.8
, pp. 635-649
-
-
Bamburg, J.R.1
Bloom, G.S.2
-
46
-
-
61949107700
-
Guidance of vascular development: Lessons from the nervous system
-
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res. 2009; 104(4):428-441.
-
(2009)
Circ Res
, vol.104
, Issue.4
, pp. 428-441
-
-
Larrivée, B.1
Freitas, C.2
Suchting, S.3
Brunet, I.4
Eichmann, A.5
-
47
-
-
38749151658
-
Cdc42- and rac1-mediated endothelial lumen formation requires PAK2, PAK4 and par3, and pkc-dependent signaling
-
Koh W, Mahan RD, Davis GE. Cdc42- and Rac1-mediated endothelial lumen formation requires PAK2, PAK4 and Par3, and PKC-dependent signaling. J Cell Sci. 2008;121(Pt 7):989-1001.
-
(2008)
J Cell Sci
, vol.121
, pp. 989-1001
-
-
Koh, W.1
Mahan, R.D.2
Davis, G.E.3
-
48
-
-
54549091120
-
From cells to organs: Building polarized tissue
-
Bryant DM, Mostov KE. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol. 2008;9(11):887-901.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.11
, pp. 887-901
-
-
Bryant, D.M.1
Mostov, K.E.2
-
49
-
-
77956389302
-
Subgroup II PAK-mediated phosphorylation regulates ran activity during mitosis
-
Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol. 2010;190(5):807-822.
-
(2010)
J Cell Biol
, vol.190
, Issue.5
, pp. 807-822
-
-
Bompard, G.1
Rabeharivelo, G.2
Frank, M.3
Cau, J.4
Delsert, C.5
Morin, N.6
-
50
-
-
19444362954
-
PAK4 mediates morphological changes through the regulation of GEF-H1
-
Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T. PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci. 2005;118(Pt 9):1861-1872.
-
(2005)
J Cell Sci
, vol.118
, pp. 1861-1872
-
-
Callow, M.G.1
Zozulya, S.2
Gishizky, M.L.3
Jallal, B.4
Smeal, T.5
|