메뉴 건너뛰기




Volumn 8, Issue 5, 2013, Pages

Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTICAL PARAMETERS; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; COMPUTER MODEL; CONTROLLED STUDY; ELMAN RECURRENT NEURAL NETWORKS; FORECASTING; HUMAN; INCIDENCE; MEAN ABSOLUTE ERROR; MEAN ABSOLUTE PERCENTAGE ERROR; MEAN SQUARE ERROR; RADIAL BASIS FUNCTION NEURAL NETWORKS; SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL; TIME SERIES ANALYSIS; TYPHOID FEVER; ALGORITHM; CHINA; PROCEDURES; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 84877049969     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0063116     Document Type: Article
Times cited : (107)

References (64)
  • 2
    • 84877067452 scopus 로고    scopus 로고
    • WHO website. Available:. Accessed 2012 May 6
    • WHO website. Available: http://www.who.int/csr/don/archive/disease/typhoid_fever/. Accessed 2012 May 6.
  • 4
    • 38249042966 scopus 로고
    • Computerized epidemiological model of typhoid fever with age structure and its use in the planning and evaluation of antityphoid immunization and sanitation programmes
    • Cvjetanovic B, Grab B, Dixon H, (1986) Computerized epidemiological model of typhoid fever with age structure and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. Mathematical Modelling 7: 719-744.
    • (1986) Mathematical Modelling , vol.7 , pp. 719-744
    • Cvjetanovic, B.1    Grab, B.2    Dixon, H.3
  • 5
    • 0015171170 scopus 로고
    • Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes
    • Cvjetanovic B, Grab B, Uemura K, (1971) Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. Bulletin of the World Health Organization 45: 53-75.
    • (1971) Bulletin of the World Health Organization , vol.45 , pp. 53-75
    • Cvjetanovic, B.1    Grab, B.2    Uemura, K.3
  • 6
    • 0022592006 scopus 로고
    • Box-jenkins modelling of some viral infectious diseases
    • Helfenstein U, (1986) Box-jenkins modelling of some viral infectious diseases. Statistics in Medicine 5: 37-47.
    • (1986) Statistics in Medicine , vol.5 , pp. 37-47
    • Helfenstein, U.1
  • 7
    • 0024764917 scopus 로고
    • Analysis and evaluation of five short-term load forecasting techniques
    • Moghram I, Rahman S, (1989) Analysis and evaluation of five short-term load forecasting techniques. Power Systems, IEEE Transactions on 4: 1484-1491.
    • (1989) Power Systems, IEEE Transactions on , vol.4 , pp. 1484-1491
    • Moghram, I.1    Rahman, S.2
  • 8
    • 84864871592 scopus 로고    scopus 로고
    • Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic Fever with renal syndrome
    • Li Q, Guo N-N, Han Z-Y, Zhang Y-B, Qi S-X, et al. (2012) Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic Fever with renal syndrome. The American journal of tropical medicine and hygiene 87: 364-370.
    • (2012) The American Journal of Tropical Medicine and Hygiene , vol.87 , pp. 364-370
    • Li, Q.1    Guo, N.-N.2    Han, Z.-Y.3    Zhang, Y.-B.4    Qi, S.-X.5
  • 11
    • 84555170608 scopus 로고    scopus 로고
    • Solar Irradiance Short-Term Prediction Model Based on BP Neural Network
    • Wang Z, Wang F, Su S, (2011) Solar Irradiance Short-Term Prediction Model Based on BP Neural Network. Energy Procedia 12: 488-494.
    • (2011) Energy Procedia , vol.12 , pp. 488-494
    • Wang, Z.1    Wang, F.2    Su, S.3
  • 12
    • 34047267854 scopus 로고    scopus 로고
    • Weather analysis using ensemble of connectionist learning paradigms
    • Maqsood I, Abraham A, (2007) Weather analysis using ensemble of connectionist learning paradigms. Applied Soft Computing 7: 995-1004.
    • (2007) Applied Soft Computing , vol.7 , pp. 995-1004
    • Maqsood, I.1    Abraham, A.2
  • 13
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC, (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15: 101-124.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 15
    • 84858379971 scopus 로고    scopus 로고
    • Research on the Forecast Model of Electricity Power Industry Loan Based on GA-BP Neural Network
    • Ke L, Wenyan G, Xiaoliu S, Zhongfu T, (2012) Research on the Forecast Model of Electricity Power Industry Loan Based on GA-BP Neural Network. Energy Procedia 14: 1918-1924.
    • (2012) Energy Procedia , vol.14 , pp. 1918-1924
    • Ke, L.1    Wenyan, G.2    Xiaoliu, S.3    Zhongfu, T.4
  • 16
    • 79959733948 scopus 로고    scopus 로고
    • A case study on a hybrid wind speed forecasting method using BP neural network
    • Guo Z-H, Wu J, Lu H-Y, Wang J-Z, (2011) A case study on a hybrid wind speed forecasting method using BP neural network. Knowledge-Based Systems 24: 1048-1056.
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1048-1056
    • Guo, Z.-H.1    Wu, J.2    Lu, H.-Y.3    Wang, J.-Z.4
  • 17
    • 10244259252 scopus 로고    scopus 로고
    • Forecasting model for the incidence of hepatitis A based on artificial neural network
    • Guan P, Huang D-S, Zhou B-S, (2004) Forecasting model for the incidence of hepatitis A based on artificial neural network. World Journal of astroenterology 10: 3579-3582.
    • (2004) World Journal of Astroenterology , vol.10 , pp. 3579-3582
    • Guan, P.1    Huang, D.-S.2    Zhou, B.-S.3
  • 19
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G, Shi J, (2010) On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87: 2313-2320.
    • (2010) Applied Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 20
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Senthil Kumar AR, Sudheer KP, Jain SK, Agarwal PK, (2005) Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes 19: 1277-1291.
    • (2005) Hydrological Processes , vol.19 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 21
    • 33644758281 scopus 로고    scopus 로고
    • Comparison of four different time series methods to forecast hepatitis A virus infection
    • Ture M, Kurt I, (2006) Comparison of four different time series methods to forecast hepatitis A virus infection. Expert Systems with Applications 31: 41-46.
    • (2006) Expert Systems with Applications , vol.31 , pp. 41-46
    • Ture, M.1    Kurt, I.2
  • 22
    • 73949086015 scopus 로고    scopus 로고
    • A maze learning comparison of Elman, long short-term memory, and Mona neural networks
    • Portegys TE, (2010) A maze learning comparison of Elman, long short-term memory, and Mona neural networks. Neural Networks 23: 306-313.
    • (2010) Neural Networks , vol.23 , pp. 306-313
    • Portegys, T.E.1
  • 23
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A, (2000) A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21: 23-35.
    • (2000) Renewable Energy , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 24
    • 0035975951 scopus 로고    scopus 로고
    • Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology
    • Nobre FF, Monteiro ABS, Telles PR, Williamson GD, (2001) Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology. Statistics in Medicine 20: 3051-3069.
    • (2001) Statistics in Medicine , vol.20 , pp. 3051-3069
    • Nobre, F.F.1    Monteiro, A.B.S.2    Telles, P.R.3    Williamson, G.D.4
  • 25
    • 84877040818 scopus 로고    scopus 로고
    • Chinese Center for Disease Prevention and Control website. Available:. Accessed 2013 Apr 5
    • Chinese Center for Disease Prevention and Control website. Available: http://www.chinacdc.cn/en/ne/200506/t20050608_23569.html. Accessed 2013 Apr 5.
  • 27
    • 0037061422 scopus 로고    scopus 로고
    • A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction
    • Ho SL, Xie M, Goh TN, (2002) A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction. Computers & Industrial Engineering 42: 371-375.
    • (2002) Computers & Industrial Engineering , vol.42 , pp. 371-375
    • Ho, S.L.1    Xie, M.2    Goh, T.N.3
  • 28
    • 0039268529 scopus 로고    scopus 로고
    • On the distributions of Augmented Dickey-Fuller statistics in processes with moving average components
    • Galbraith J, Zinde-Walsh V, (1999) On the distributions of Augmented Dickey-Fuller statistics in processes with moving average components. Journal of Econometrics 93: 25-47.
    • (1999) Journal of Econometrics , vol.93 , pp. 25-47
    • Galbraith, J.1    Zinde-Walsh, V.2
  • 29
    • 84981398169 scopus 로고
    • A Conditional Least Squares Approach to Bilinear Time Series Estimation
    • Grahn T, (1995) A Conditional Least Squares Approach to Bilinear Time Series Estimation. Journal of Time Series Analysis 16: 509-529.
    • (1995) Journal of Time Series Analysis , vol.16 , pp. 509-529
    • Grahn, T.1
  • 30
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Ömer Faruk D, (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence 23: 586-594.
    • (2010) Engineering Applications of Artificial Intelligence , vol.23 , pp. 586-594
    • Ömer Faruk, D.1
  • 31
    • 0037593432 scopus 로고    scopus 로고
    • On time series with randomized unit root and randomized seasonal unit root
    • Fong PW, Li WK, (2003) On time series with randomized unit root and randomized seasonal unit root. Computational Statistics & Data Analysis 43: 369-395.
    • (2003) Computational Statistics & Data Analysis , vol.43 , pp. 369-395
    • Fong, P.W.1    Li, W.K.2
  • 33
    • 84877013411 scopus 로고    scopus 로고
    • The SAS Company. SAS/ETS(R) 9.2 User's Guide website. Available:. Accessed 2013 Apr 5
    • The SAS Company. SAS/ETS(R) 9.2 User's Guide website. Available: http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/viewer.htm#etsug_arima_sect019.htm. Accessed 2013 Apr 5.
  • 37
    • 0034868960 scopus 로고    scopus 로고
    • An algorithm for fast convergence in training neural networks
    • Wilamowski BM, Iplikci S, Kaynak O, Efe MO, (2001) An algorithm for fast convergence in training neural networks. IEEE 3: 1778-1782.
    • (2001) IEEE , vol.3 , pp. 1778-1782
    • Wilamowski, B.M.1    Iplikci, S.2    Kaynak, O.3    Efe, M.O.4
  • 39
    • 0036756215 scopus 로고    scopus 로고
    • Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods
    • Saini LM, Soni MK, (2002) Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods. Generation, Transmission and Distribution, IEE Proceedings- 149: 578-584.
    • (2002) Generation, Transmission and Distribution, IEE Proceedings- , vol.149 , pp. 578-584
    • Saini, L.M.1    Soni, M.K.2
  • 42
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding II DK, Cios KJ, (1996) Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10: 149-168.
    • (1996) Neurocomputing , vol.10 , pp. 149-168
    • Wedding II, D.K.1    Cios, K.J.2
  • 43
    • 33847020503 scopus 로고    scopus 로고
    • Fault Diagnosis in a Hydraulic Position Servo System Using RBF Neural Network
    • Liu H-m, Wang S-p, Ouyang P-c, (2006) Fault Diagnosis in a Hydraulic Position Servo System Using RBF Neural Network. Chinese Journal of Aeronautics 19: 346-353.
    • (2006) Chinese Journal of Aeronautics , vol.19 , pp. 346-353
    • Liu, H.-m.1    Wang, S.-p.2    Ouyang, P.-c.3
  • 44
    • 33947320449 scopus 로고    scopus 로고
    • An RBF Network With OLS and EPSO Algorithms for Real-Time Power Dispatch
    • Chao-Ming H, Fu-Lu W, (2007) An RBF Network With OLS and EPSO Algorithms for Real-Time Power Dispatch. Power Systems, IEEE Transactions on 22: 96-104.
    • (2007) Power Systems, IEEE Transactions on , vol.22 , pp. 96-104
    • Chao-Ming, H.1    Fu-Lu, W.2
  • 45
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks
    • Sherstinsky A, Picard RW, (1996) On the efficiency of the orthogonal least squares training method for radial basis function networks. Neural Networks, IEEE Transactions on 7: 195-200.
    • (1996) Neural Networks, IEEE Transactions on , vol.7 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2
  • 46
    • 0030082425 scopus 로고    scopus 로고
    • Training of Elman networks and dynamic system modelling
    • Pham DT, Liu X, (1996) Training of Elman networks and dynamic system modelling. International Journal of Systems Science 27: 221-226.
    • (1996) International Journal of Systems Science , vol.27 , pp. 221-226
    • Pham, D.T.1    Liu, X.2
  • 47
    • 0348155956 scopus 로고    scopus 로고
    • Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery
    • Şeker S, Ayaz E, Türkcan E, (2003) Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Engineering Applications of Artificial Intelligence 16: 647-656.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , pp. 647-656
    • Şeker, S.1    Ayaz, E.2    Türkcan, E.3
  • 48
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm
    • Riedmiller M, Braun H, (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE 1993: 586-591.
    • (1993) IEEE , vol.1993 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 49
    • 35448945580 scopus 로고    scopus 로고
    • Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster
    • Brunelli U, Piazza V, Pignato L, Sorbello F, Vitabile S, (2008) Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster. Building and Environment 43: 304-314.
    • (2008) Building and Environment , vol.43 , pp. 304-314
    • Brunelli, U.1    Piazza, V.2    Pignato, L.3    Sorbello, F.4    Vitabile, S.5
  • 50
    • 78649720924 scopus 로고    scopus 로고
    • On the combination of exponential smoothing and diffusion forecasts: An application to broadband diffusion in the OECD area
    • Christodoulos C, Michalakelis C, Varoutas D, (2011) On the combination of exponential smoothing and diffusion forecasts: An application to broadband diffusion in the OECD area. Technological Forecasting and Social Change 78: 163-170.
    • (2011) Technological Forecasting and Social Change , vol.78 , pp. 163-170
    • Christodoulos, C.1    Michalakelis, C.2    Varoutas, D.3
  • 51
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks' performance in seasonal time series forecasting
    • Hamzaçebi C, (2008) Improving artificial neural networks' performance in seasonal time series forecasting. Information Sciences 178: 4550-4559.
    • (2008) Information Sciences , vol.178 , pp. 4550-4559
    • Hamzaçebi, C.1
  • 53
    • 77954995059 scopus 로고    scopus 로고
    • A Hybrid Model for Short-Term Bacillary Dysentery Prediction in Yichang City, China
    • Yan W, Xu Y, Yang X, Zhou Y, (2010) A Hybrid Model for Short-Term Bacillary Dysentery Prediction in Yichang City, China. Japanese Journal of Infectious Diseases 63: 264-270.
    • (2010) Japanese Journal of Infectious Diseases , vol.63 , pp. 264-270
    • Yan, W.1    Xu, Y.2    Yang, X.3    Zhou, Y.4
  • 54
    • 0029967627 scopus 로고    scopus 로고
    • Application of exponential smoothing for nosocomial infection surveillance
    • Ngo L, Tager IB, Hadley D, (1996) Application of exponential smoothing for nosocomial infection surveillance. American Journal of Epidemiology 143: 637-647.
    • (1996) American Journal of Epidemiology , vol.143 , pp. 637-647
    • Ngo, L.1    Tager, I.B.2    Hadley, D.3
  • 55
    • 30144445300 scopus 로고    scopus 로고
    • Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis
    • Chadwick D, Arch B, Wilder-Smith A, Paton N, (2006) Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis. Journal of Clinical Virology 35: 147-153.
    • (2006) Journal of Clinical Virology , vol.35 , pp. 147-153
    • Chadwick, D.1    Arch, B.2    Wilder-Smith, A.3    Paton, N.4
  • 57
    • 84858059232 scopus 로고    scopus 로고
    • A multi-tiered time-series modelling approach to forecasting respiratory syncytial virus incidence at the local level
    • Spaeder MC, Fackler JC, (2012) A multi-tiered time-series modelling approach to forecasting respiratory syncytial virus incidence at the local level. Epidemiology and Infection 140: 602-607.
    • (2012) Epidemiology and Infection , vol.140 , pp. 602-607
    • Spaeder, M.C.1    Fackler, J.C.2
  • 58
    • 80051582959 scopus 로고    scopus 로고
    • Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model
    • Liu Q, Liu X, Jiang B, Yang W (2011) Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. Bmc Infectious Diseases 11.
    • (2011) Bmc Infectious Diseases , vol.11
    • Liu, Q.1    Liu, X.2    Jiang, B.3    Yang, W.4
  • 60
    • 10244259252 scopus 로고    scopus 로고
    • Forecasting model for the incidence of hepatitis A based on artificial neural network
    • Guan P, Huang D-S, Zhou B-S, (2004) Forecasting model for the incidence of hepatitis A based on artificial neural network. World Journal of astroenterology 10: 3579-3582.
    • (2004) World Journal of Astroenterology , vol.10 , pp. 3579-3582
    • Guan, P.1    Huang, D.-S.2    Zhou, B.-S.3
  • 61
    • 1642374874 scopus 로고    scopus 로고
    • Analysis of temporary series in the epidemiology of typhoid fever in Spain
    • Rios M, Garcia JM, Cubedo M, Perez D, (1996) Analysis of temporary series in the epidemiology of typhoid fever in Spain. Medicina Clinica 106: 686-689.
    • (1996) Medicina Clinica , vol.106 , pp. 686-689
    • Rios, M.1    Garcia, J.M.2    Cubedo, M.3    Perez, D.4
  • 62
    • 77952489307 scopus 로고    scopus 로고
    • Comparison of three time-series models for predicting campylobacteriosis risk
    • Weisent J, Seaver W, Odoi A, Rohrbach B, (2010) Comparison of three time-series models for predicting campylobacteriosis risk. Epidemiology and Infection 138: 898-906.
    • (2010) Epidemiology and Infection , vol.138 , pp. 898-906
    • Weisent, J.1    Seaver, W.2    Odoi, A.3    Rohrbach, B.4
  • 64
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei M, Bijari M, (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing 11: 2664-2675.
    • (2011) Applied Soft Computing , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.