메뉴 건너뛰기




Volumn 43, Issue 3, 2008, Pages 304-314

Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster

Author keywords

Air quality; Forecasting; Modeling and measurement; Recurrent neural networks

Indexed keywords

AIR QUALITY; COMPUTER SIMULATION; HEALTH CARE; NEURAL NETWORKS; STOCHASTIC MODELS; SULFUR DIOXIDE;

EID: 35448945580     PISSN: 03601323     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.buildenv.2006.05.011     Document Type: Article
Times cited : (22)

References (18)
  • 2
    • 0016491465 scopus 로고
    • Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants
    • McCollister G.M., and Wilson K.R. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants. Atmospheric Environment 9 (1974) 416-423
    • (1974) Atmospheric Environment , vol.9 , pp. 416-423
    • McCollister, G.M.1    Wilson, K.R.2
  • 3
    • 35448993416 scopus 로고    scopus 로고
    • Box GEP, Jenkins GM. Time series analysis: forecasting and control. Holden-Day. S. Francisco: ISBN 0-8162-1104-3.
  • 4
    • 0001117376 scopus 로고    scopus 로고
    • Spatio-temporal connectionist networks: a taxonomy and review
    • Kremer S.C. Spatio-temporal connectionist networks: a taxonomy and review. Neural Computation 13 2 (2001) 249-306
    • (2001) Neural Computation , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.C.1
  • 5
    • 35448984876 scopus 로고    scopus 로고
    • Shiva Nagendra SM, Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological modelling, corrected proof available online 11 July 2005, in press.
  • 6
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia
    • Viotti P., Liuti G., and Di Genova P. Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling 148 1 (2002) 27-46
    • (2002) Ecological Modelling , vol.148 , Issue.1 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Di Genova, P.3
  • 7
  • 8
    • 17744393889 scopus 로고    scopus 로고
    • 2 concentrations. In: Proceedings of the 2004 winter simulation conference.
  • 9
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • Tasadduq I., Shafiqur R., and Khaled B. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy 25 (2002) 545-554
    • (2002) Renewable Energy , vol.25 , pp. 545-554
    • Tasadduq, I.1    Shafiqur, R.2    Khaled, B.3
  • 10
    • 0030149443 scopus 로고    scopus 로고
    • Khotanzad A, Davis MH, Abaye A. An artificial neural network hourly temperature forecaster with applications in load forecasting. IEEE Transaction on Power System, 1996;11(2) May.
  • 11
    • 35448934375 scopus 로고    scopus 로고
    • Maqsood I, Riaz Khan M, Abraham A.Weather forecasting models using ensembles of neural networks. In: Third international conference on intelligent systems design and applications, intelligent systems design and applications, advances in soft computing. Germany:Springer; 2002. p. 33-42.
  • 12
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227 (2000) 56-65
    • (2000) Journal of Hydrology , Issue.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 13
    • 35448939575 scopus 로고    scopus 로고
    • Koskela T, Lehtokangas M, Saarinen J, Kaski K. Time series prediction with multilayer perceptron, FIR and Elman neural networks. In: Proceedings of the world congress on neural networks. INNS Press; 1996. p. 491-6.
  • 14
    • 0030717309 scopus 로고    scopus 로고
    • Hannan JM, Bishop JM, A comparison of fast training algorithms over two real problems In: Proceedings of the fifth international conference ANN, Cambridge, UK, 1997. p. 1-6.
  • 15
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 14 (1990) 179-211
    • (1990) Cognitive Science , Issue.14 , pp. 179-211
    • Elman, J.L.1
  • 16
    • 84943274699 scopus 로고    scopus 로고
    • Riedmiller M, Braun H. A direct adaptive method for faster BackPROPagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks 1993 (ICNN 93), 1993.
  • 17
    • 35448966530 scopus 로고    scopus 로고
    • Sarle WS. Stopped training and other remedies for over fitting, In:Proceedings of the 27th symposium on the interface of computing scince and statistic, 1995. p. 352-60.
  • 18
    • 35448941819 scopus 로고    scopus 로고
    • x peak forecasting using recurrent neural network. In: Proceedings of the 13th SIRWEC (standing European road weather commission) conference, Torino, Italy, 2006. p. 33-40.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.