메뉴 건너뛰기




Volumn 27, Issue 10, 2013, Pages 1399-1410

Dimensionality reduction in drought modelling

Author keywords

Artificial neural network; Drought monitoring; Mutual information; Portugal; Rain gauge network; Sensitivity analysis; Standardized precipitation index

Indexed keywords

DROUGHT MONITORING; MUTUAL INFORMATIONS; PORTUGAL; RAIN GAUGE NETWORKS; STANDARDIZED PRECIPITATION INDEX;

EID: 84877038360     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.9300     Document Type: Article
Times cited : (8)

References (53)
  • 1
    • 61749092444 scopus 로고    scopus 로고
    • Assessment of areal interpolation methods for spatial analysis of SPI and EDI drought indices
    • Akhtari R, Morid S, Mahdianc MH, Smakhtind V. 2009. Assessment of areal interpolation methods for spatial analysis of SPI and EDI drought indices. International Journal of Climatology 29: 135-145.
    • (2009) International Journal of Climatology , vol.29 , pp. 135-145
    • Akhtari, R.1    Morid, S.2    Mahdianc, M.H.3    Smakhtind, V.4
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology. I. Preliminary concepts. Journal of Hydrology Engineering 5(2): 115-123.
    • (2000) Journal of Hydrology Engineering , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrology Engineering 5(2): 124-137.
    • (2000) Journal of Hydrology Engineering , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0035329583 scopus 로고    scopus 로고
    • Selecting inputs for modeling using normalized higher order statistics and independent component analysis
    • Back AD, Trappenberg TP. 2001. Selecting inputs for modeling using normalized higher order statistics and independent component analysis. IEEE Transactions on Neural Networks 12(3): 612-617.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.3 , pp. 612-617
    • Back, A.D.1    Trappenberg, T.P.2
  • 5
    • 0021639778 scopus 로고
    • Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations
    • Bastin G, Lorent B, Dunqué C, Gevers M. 1984. Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. Water Resources Research 20(4): 463-470.
    • (1984) Water Resources Research , vol.20 , Issue.4 , pp. 463-470
    • Bastin, G.1    Lorent, B.2    Dunqué, C.3    Gevers, M.4
  • 6
    • 0022266252 scopus 로고
    • Multicriterion network design using geostatistics
    • Bogardi I, Bardossy A. 1985. Multicriterion network design using geostatistics. Water Resources Research 21(2): 199-208.
    • (1985) Water Resources Research , vol.21 , Issue.2 , pp. 199-208
    • Bogardi, I.1    Bardossy, A.2
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden GJ, Dandy GC, Maier HR. 2005. Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology 301: 75-92.
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 79961044879 scopus 로고    scopus 로고
    • Optimal extension of rain gauge monitoring network for rainfall intensity and erosivity index interpolation
    • Chebbi A, Bargaouir ZK, Cunha MC. 2011. Optimal extension of rain gauge monitoring network for rainfall intensity and erosivity index interpolation. Journal of Hydrologic Engineering 16: 353-365.
    • (2011) Journal of Hydrologic Engineering , vol.16 , pp. 353-365
    • Chebbi, A.1    Bargaouir, Z.K.2    Cunha, M.C.3
  • 11
    • 38849137850 scopus 로고    scopus 로고
    • Rainfall network design using kriging and entropy
    • DOI: 10.1002/hyp.6292.
    • Chen Y-C, Wei C, Yeh H-C. 2008. Rainfall network design using kriging and entropy. Hydrological Processes 22: 340-346. DOI: 10.1002/hyp.6292.
    • (2008) Hydrological Processes , vol.22 , pp. 340-346
    • Chen, Y.-C.1    Wei, C.2    Yeh, H.-C.3
  • 12
    • 34247244160 scopus 로고    scopus 로고
    • Using neural networks to model the impacts of climate change on water supplies
    • Elgaali E, García LA. 2007. Using neural networks to model the impacts of climate change on water supplies. Journal of Water Resources Planning and Management 133(3): 230-243.
    • (2007) Journal of Water Resources Planning and Management , vol.133 , Issue.3 , pp. 230-243
    • Elgaali, E.1    García, L.A.2
  • 13
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach
    • Fernando MKG, Maier HR, Dandy GC. 2009. Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. Journal of Hydrology 367: 165-176.
    • (2009) Journal of Hydrology , vol.367 , pp. 165-176
    • Fernando, M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 15
    • 77952110711 scopus 로고    scopus 로고
    • A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters
    • Gutiérrez-Estrada JC, Bilton DT. 2010. A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters. Ecological Modelling 221: 1451-1462.
    • (2010) Ecological Modelling , vol.221 , pp. 1451-1462
    • Gutiérrez-Estrada, J.C.1    Bilton, D.T.2
  • 16
    • 34547838136 scopus 로고    scopus 로고
    • Monthly catch forecasting of anchovy Engraulisringens in the north area of Chile: Non-linear univariate approach
    • Gutiérrez-Estrada JC, Silva C, Yáñez E, Rodríguez N, Pulido-Calvo I. 2007. Monthly catch forecasting of anchovy Engraulisringens in the north area of Chile: Non-linear univariate approach. Fisheries Research 86: 188-200.
    • (2007) Fisheries Research , vol.86 , pp. 188-200
    • Gutiérrez-Estrada, J.C.1    Silva, C.2    Yáñez, E.3    Rodríguez, N.4    Pulido-Calvo, I.5
  • 19
    • 0001138328 scopus 로고
    • Algorithm AS 136.A K-means clustering algorithm
    • Hartigan JA, Wong MA. 1979. Algorithm AS 136.A K-means clustering algorithm. Applied Statistics 28(1): 100-108.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 21
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S. 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 22
  • 23
    • 0033100606 scopus 로고    scopus 로고
    • A method to determine the required number of neural-network training repetitions
    • Iyer MS, Rhinehart RR. 1999. A method to determine the required number of neural-network training repetitions. IEEE Transactions on Neural Networks 10(2): 427-432.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 427-432
    • Iyer, M.S.1    Rhinehart, R.R.2
  • 24
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A, Sudheer KP, Srinivasulu S. 2004. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrological Processes 18: 571-581.
    • (2004) Hydrological Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 25
    • 60349099433 scopus 로고    scopus 로고
    • Hydrologic homogeneous regions using monthly streamflow in Turkey
    • Kahya E, Demirel MC, Beg OA. 2008. Hydrologic homogeneous regions using monthly streamflow in Turkey. Earth Science Resources Journal 12(2): 181-193.
    • (2008) Earth Science Resources Journal , vol.12 , Issue.2 , pp. 181-193
    • Kahya, E.1    Demirel, M.C.2    Beg, O.A.3
  • 26
    • 0019227948 scopus 로고
    • Real time forecasting with a conceptual hydrological model. 2. Applications and results
    • Kitanidis PK, Bras RL. 1980. Real time forecasting with a conceptual hydrological model. 2. Applications and results. Water Resources Research 16(6): 1034-1044.
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 27
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • Legates DR, McCabe Jr. GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 28
    • 0030405597 scopus 로고    scopus 로고
    • Neural network models for forecasting univariate time series
    • Maier HR, Dandy GC. 1996. Neural network models for forecasting univariate time series. Neural Network World 5: 747-772.
    • (1996) Neural Network World , vol.5 , pp. 747-772
    • Maier, H.R.1    Dandy, G.C.2
  • 29
    • 0031222587 scopus 로고    scopus 로고
    • Methods for determining the inputs to artificial neural networks for forecasting water quality in rivers
    • Maier HR, Dandy GC. 1997. Methods for determining the inputs to artificial neural networks for forecasting water quality in rivers. Microcomputers in Civil Engineering 12: 353-368.
    • (1997) Microcomputers in Civil Engineering , vol.12 , pp. 353-368
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: are view of modeling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: are view of modeling issues and applications. Environmental Modelling and Software 15: 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 31
    • 84865486245 scopus 로고
    • Principles of geostatistics
    • Matheron G. 1963. Principles of geostatistics. Economic Geology 58: 1246-1266.
    • (1963) Economic Geology , vol.58 , pp. 1246-1266
    • Matheron, G.1
  • 32
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May RJ, Maier HR, Dandy GC, Fernando TMKG. 2008. Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling and Software 23(10-11): 1312-1326.
    • (2008) Environmental Modelling and Software , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 34
    • 0024621174 scopus 로고
    • On estimation of entropy and mutual information of consinuous distributions
    • Moddemeijer R. 1989. On estimation of entropy and mutual information of consinuous distributions. Signal Processing 16(3): 233-246.
    • (1989) Signal Processing , vol.16 , Issue.3 , pp. 233-246
    • Moddemeijer, R.1
  • 35
    • 0026311734 scopus 로고
    • Forecast verification: its complexity and dimensionality
    • Murphy AH. 1991. Forecast verification: its complexity and dimensionality. Monthly Weather Review 119: 1590-1601.
    • (1991) Monthly Weather Review , vol.119 , pp. 1590-1601
    • Murphy, A.H.1
  • 36
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. I. A discussion of principles
    • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models. I. A discussion of principles. Journal of Hydrology 10: 282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 37
    • 0032170219 scopus 로고    scopus 로고
    • Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing
    • Pardo-Igúzquiza E. 1998. Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology 210: 206-220.
    • (1998) Journal of Hydrology , vol.210 , pp. 206-220
    • Pardo-Igúzquiza, E.1
  • 38
    • 77949577676 scopus 로고    scopus 로고
    • Estimação em Portugal Continental de escoamento e de capacidadesuteis de albufeiras de regularização na ausência de informação
    • in Portuguese).
    • Portela MM, Quintela AC. 2006. Estimação em Portugal Continental de escoamento e de capacidadesuteis de albufeiras de regularização na ausência de informação. Recursos Hidrícos 27(2): 7-18 (in Portuguese).
    • (2006) Recursos Hidrícos , vol.27 , Issue.2 , pp. 7-18
    • Portela, M.M.1    Quintela, A.C.2
  • 39
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I, Portela MM. 2007.Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology 332: 1-15.
    • (2007) Journal of Hydrology , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 40
    • 0022471098 scopus 로고
    • 'Learning' representations by backpropagation errors
    • Rumelhart DE, Hinton GE, Williams RJ. 1986. 'Learning' representations by backpropagation errors. Nature 323: 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 42
    • 77949588816 scopus 로고    scopus 로고
    • Spatial and temporal variability of droughts in Portugal
    • DOI: 10.1029/2009WR008071.
    • Santos JF, Pulido-Calvo I, Portela MM. 2010. Spatial and temporal variability of droughts in Portugal. Water Resources Research 46: W03503. DOI: 10.1029/2009WR008071.
    • (2010) Water Resources Research , vol.46
    • Santos, J.F.1    Pulido-Calvo, I.2    Portela, M.M.3
  • 44
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • DOI: 10.1002/hyp.5581
    • Senthil-Kumar AR, Sudheer KP, Jain SK, Agarwal PK. 2005. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes 19: 1277-1291. DOI: 10.1002/hyp.5581.
    • (2005) Hydrological Processes , vol.19 , pp. 1277-1291
    • Senthil-Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 45
    • 84856043672 scopus 로고
    • A mathematical theory of communications
    • 623-656.
    • Shannon CE. 1948. A mathematical theory of communications. The Bell System Technical Journal 27: 379-423 and 623-656.
    • (1948) The Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 46
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part1- A strategy for system predictor identification
    • Sharma A. 2000. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part1- A strategy for system predictor identification. Journal of Hydrology 239: 232-239.
    • (2000) Journal of Hydrology , vol.239 , pp. 232-239
    • Sharma, A.1
  • 47
    • 27644448548 scopus 로고    scopus 로고
    • Simulation of flood flow in a river system using artificial neural networks
    • Shrestha RR, Theobald S, Nestmann F. 2005. Simulation of flood flow in a river system using artificial neural networks. Hydrology and Earth System Sciences 9(4): 313-321.
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.4 , pp. 313-321
    • Shrestha, R.R.1    Theobald, S.2    Nestmann, F.3
  • 48
    • 78650409740 scopus 로고    scopus 로고
    • Uni-dimensional analysis of droughts for management decisions
    • Tsakiris G. 2008. Uni-dimensional analysis of droughts for management decisions. European Water 23/24: 3-11.
    • (2008) European Water , vol.23-24 , pp. 3-11
    • Tsakiris, G.1
  • 49
    • 0141571482 scopus 로고    scopus 로고
    • Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature
    • Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM. 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Research Journal 24: 161-180.
    • (2003) Climate Research Journal , vol.24 , pp. 161-180
    • Vicente-Serrano, S.M.1    Saz-Sánchez, M.A.2    Cuadrat, J.M.3
  • 50
    • 33746892794 scopus 로고
    • Numerical classification: Non hierarchical methods
    • chap. 11. Oxford Univ. Press: Oxford, U.K
    • Webster R, Oliver MA. 1990. Numerical classification: Non hierarchical methods. In Statistical Methods in Soil and Land Resource Survey, chap. 11. Oxford Univ. Press: Oxford, U.K; 191-212.
    • (1990) Statistical Methods in Soil and Land Resource Survey , pp. 191-212
    • Webster, R.1    Oliver, M.A.2
  • 53
    • 0030462726 scopus 로고    scopus 로고
    • Radial Basis Function Network Configuration using Mutual Information and the Orthogonal Least Squares Algorithm
    • Zheng GL, Billings SA. 1996. Radial Basis Function Network Configuration using Mutual Information and the Orthogonal Least Squares Algorithm. Neural Networks 9: 1619-1637.
    • (1996) Neural Networks , vol.9 , pp. 1619-1637
    • Zheng, G.L.1    Billings, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.