메뉴 건너뛰기




Volumn 23, Issue 9, 2012, Pages 1448-1460

Hierarchical approach for multiscale support vector regression

Author keywords

Multiple kernels; multiscale regression; support vector machine (SVM); support vector regression (SVR)

Indexed keywords

CONFIGURATION PARAMETERS; HIERARCHICAL APPROACH; LINEAR COMBINATIONS; MULTI-SCALE RECONSTRUCTION; MULTIPLE KERNELS; MULTISCALES; REGRESSION FUNCTION; SUPPORT VECTOR REGRESSION (SVR);

EID: 84876933315     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2205018     Document Type: Article
Times cited : (33)

References (36)
  • 3
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, 2004.
    • (2004) Stat. Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 131-159, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 6
    • 37549013404 scopus 로고    scopus 로고
    • MultiK-MHKS: A novel multiple kernel learning algorithm
    • Feb
    • Z. Wang, S. Chen, and T. Sun, "MultiK-MHKS: A novel multiple kernel learning algorithm," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 348-353, Feb. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.2 , pp. 348-353
    • Wang, Z.1    Chen, S.2    Sun, T.3
  • 9
    • 33750379440 scopus 로고    scopus 로고
    • Non-flat function estimation with a multi-scale support vector regression
    • D. Zheng, J. Wang, and Y. Zhao, "Non-flat function estimation with a multi-scale support vector regression," Neurocomputing, vol. 70, nos. 1-3, pp. 420-429, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 420-429
    • Zheng, D.1    Wang, J.2    Zhao, Y.3
  • 10
    • 33847150541 scopus 로고    scopus 로고
    • Nonlinear system identification based on multiresolution support vector regression
    • H. Peng and J. Wang, "Nonlinear system identification based on multiresolution support vector regression," in Proc. Int. Conf. Neural Netw. Brain, vol. 1. 2005, pp. 240-243.
    • (2005) Proc. Int. Conf. Neural Netw. Brain , vol.1 , pp. 240-243
    • Peng, H.1    Wang, J.2
  • 11
    • 0001886167 scopus 로고
    • Fast learning in multi-resolution hierarchies
    • San Francisco, CA: Morgan Kaufmann
    • J. E. Moody, "Fast learning in multi-resolution hierarchies," in Neural Information Processing Systems. San Francisco, CA: Morgan Kaufmann, 1988, pp. 29-39.
    • (1988) Neural Information Processing Systems , pp. 29-39
    • Moody, J.E.1
  • 12
    • 1242331283 scopus 로고    scopus 로고
    • Multi-scale approximation with hierarchical radial basis functions networks
    • Jan
    • S. Ferrari, M. Maggioni, and N. A. Borghese, "Multi-scale approximation with hierarchical radial basis functions networks," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 178-188, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 178-188
    • Ferrari, S.1    Maggioni, M.2    Borghese, N.A.3
  • 13
    • 76749171202 scopus 로고    scopus 로고
    • A hierarchical RBF online learning algorithm for real-time 3-D scanner
    • Feb.
    • S. Ferrari, F. Bellocchio, V. Piuri, and N. A. Borghese, "A hierarchical RBF online learning algorithm for real-time 3-D scanner," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 275-285, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.2 , pp. 275-285
    • Ferrari, S.1    Bellocchio, F.2    Piuri, V.3    Borghese, N.A.4
  • 15
    • 29344431527 scopus 로고    scopus 로고
    • Support vector machines for 3D shape processing
    • F. Steinke, B. Schölkopf, and V. Blanz, "Support vector machines for 3D shape processing," Comput. Graph. Forum, vol. 24, no. 3, pp. 285-294, 2005.
    • (2005) Comput. Graph. Forum , vol.24 , Issue.3 , pp. 285-294
    • Steinke, F.1    Schölkopf, B.2    Blanz, V.3
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Aug
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, pp. 119-139, Aug. 1997.
    • (1997) J. Comput. Syst. Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 0036568038 scopus 로고    scopus 로고
    • Boosting methods for regression
    • May
    • N. Duffy and D. Helmbold, "Boosting methods for regression," Mach. Learn., vol. 47, pp. 153-200, May 2002.
    • (2002) Mach. Learn , vol.47 , pp. 153-200
    • Duffy, N.1    Helmbold, D.2
  • 19
    • 73949120758 scopus 로고    scopus 로고
    • An effective method of pruning support vector machine classifiers
    • Jan.
    • X. Liang, "An effective method of pruning support vector machine classifiers," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 26-38, Jan. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.1 , pp. 26-38
    • Liang, X.1
  • 21
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Jul
    • S. S. Keerthi, O. Chapelle, and D. D. Coste, "Building support vector machines with reduced classifier complexity," J. Mach. Learn. Res., vol. 7, pp. 1493-1515, Jul. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    Coste, D.D.3
  • 22
    • 33750069471 scopus 로고    scopus 로고
    • An efficient method for simplifying decision functions of support vector machines
    • Oct
    • J. Guo, N. Takahashi, and T. Nishi, "An efficient method for simplifying decision functions of support vector machines," IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E89-A, no. 10, pp. 2795-2802, Oct. 2006.
    • (2006) IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , vol.E89-A , Issue.10 , pp. 2795-2802
    • Guo, J.1    Takahashi, N.2    Nishi, T.3
  • 23
    • 28244453270 scopus 로고    scopus 로고
    • SMO-based pruning methods for sparse least squares support vector machines
    • Nov
    • X. Zeng and X. Chen, "SMO-based pruning methods for sparse least squares support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1541-1546, Nov. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.6 , pp. 1541-1546
    • Zeng, X.1    Chen, X.2
  • 24
    • 31844434496 scopus 로고    scopus 로고
    • An efficient method for simplifying support vector machines
    • D. Nguyen and T. Ho, "An efficient method for simplifying support vector machines," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 617-624.
    • (2005) Proc. 22nd Int. Conf. Mach. Learn , pp. 617-624
    • Nguyen, D.1    Ho, T.2
  • 25
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Apr
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Apr. 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 26
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press ch. 11
    • T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999, ch. 11, pp. 169-184.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 27
    • 70350712299 scopus 로고    scopus 로고
    • Two heuristic strategies for searching optimal hyper parameters of C-SVM
    • D. Wang, X.-B. Wu, and D.-M. Lin, "Two heuristic strategies for searching optimal hyper parameters of C-SVM," in Proc. 8th Int. Conf. Mach. Learn. Cybern., 2009, pp. 3690-3695.
    • (2009) Proc. 8th Int. Conf. Mach. Learn. Cybern , pp. 3690-3695
    • Wang, D.1    Wu, X.-B.2    Lin, D.-M.3
  • 28
    • 67650469183 scopus 로고    scopus 로고
    • Efficient model selection for support vector machine with Gaussian kernel function
    • Apr
    • Y. Tang, W. Guo, and J. Gao, "Efficient model selection for support vector machine with Gaussian kernel function," in Proc. IEEE Symp. Comp. Intell. Data Mining, Apr. 2009, pp. 40-45.
    • (2009) Proc IEEE Symp. Comp. Intell. Data Mining , pp. 40-45
    • Tang, Y.1    Guo, W.2    Gao, J.3
  • 30
    • 84876917979 scopus 로고    scopus 로고
    • Heteroscedastic Kernel Ridge Regression Demo Jul. [Online]. Available
    • Heteroscedastic Kernel Ridge Regression Demo. (2005, Jul.) [Online]. Available: http://theoval.cmp.uea.ac.uk/matlab/hkrr-demo/hkrr-demo.m
    • (2005)
  • 31
    • 4344609320 scopus 로고
    • Jul 7 [Online]. Available
    • UCI Machine Learning Repository. (1993, Jul. 7) [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Housing
    • (1993) UCI Machine Learning Repository
  • 32
    • 34249042729 scopus 로고    scopus 로고
    • Multiple kernel learning for support vector regression
    • Univ. New Mexico, Albuquerque, Tech. Rep. TR-CS-2005-42
    • S. Qiu and T. Lane, "Multiple kernel learning for support vector regression," Dept. Comput. Sci., Univ. New Mexico, Albuquerque, Tech. Rep. TR-CS-2005-42, 2005.
    • (2005) Dept. Comput. Sci.
    • Qiu, S.1    Lane, T.2
  • 33
    • 33947363572 scopus 로고    scopus 로고
    • New learning paradigms in soft computing
    • Heidelberg, Germany: Physica-Verlag GmbH
    • M. Hasenjäger and H. Ritter, "New learning paradigms in soft computing," in Active Learning in Neural Networks. Heidelberg, Germany: Physica-Verlag GmbH, 2002, pp. 137-169.
    • (2002) Active Learning in Neural Networks , pp. 137-169
    • Hasenjäger, M.1    Ritter, H.2
  • 34
    • 0027632248 scopus 로고
    • 'Neuralgas' network for vector quantization and its application to time-series prediction
    • Jul
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, "'Neuralgas' network for vector quantization and its application to time-series prediction," IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 558-568, Jul. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.4 , pp. 558-568
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 35
    • 67949110882 scopus 로고    scopus 로고
    • Piscataway NJ: IEEE Press
    • D. Wunsch and R. Xu, Clustering. Piscataway, NJ: IEEE Press, 2008.
    • (2008) Clustering
    • Wunsch, D.1    Xu, R.2
  • 36
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, no. 2, pp. 219-269, 1995.
    • (1995) Neural Comput , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.