-
3
-
-
4043137356
-
A tutorial on support vector regression
-
A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput., vol. 14, no. 3, pp. 199-222, 2004.
-
(2004)
Stat. Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
4
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
Jan
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, "Learning the kernel matrix with semi-definite programming," J. Mach. Learn. Res., vol. 5, pp. 27-72, Jan. 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
5
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 131-159, 2002.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
6
-
-
37549013404
-
MultiK-MHKS: A novel multiple kernel learning algorithm
-
Feb
-
Z. Wang, S. Chen, and T. Sun, "MultiK-MHKS: A novel multiple kernel learning algorithm," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 348-353, Feb. 2008.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.30
, Issue.2
, pp. 348-353
-
-
Wang, Z.1
Chen, S.2
Sun, T.3
-
9
-
-
33750379440
-
Non-flat function estimation with a multi-scale support vector regression
-
D. Zheng, J. Wang, and Y. Zhao, "Non-flat function estimation with a multi-scale support vector regression," Neurocomputing, vol. 70, nos. 1-3, pp. 420-429, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 420-429
-
-
Zheng, D.1
Wang, J.2
Zhao, Y.3
-
10
-
-
33847150541
-
Nonlinear system identification based on multiresolution support vector regression
-
H. Peng and J. Wang, "Nonlinear system identification based on multiresolution support vector regression," in Proc. Int. Conf. Neural Netw. Brain, vol. 1. 2005, pp. 240-243.
-
(2005)
Proc. Int. Conf. Neural Netw. Brain
, vol.1
, pp. 240-243
-
-
Peng, H.1
Wang, J.2
-
11
-
-
0001886167
-
Fast learning in multi-resolution hierarchies
-
San Francisco, CA: Morgan Kaufmann
-
J. E. Moody, "Fast learning in multi-resolution hierarchies," in Neural Information Processing Systems. San Francisco, CA: Morgan Kaufmann, 1988, pp. 29-39.
-
(1988)
Neural Information Processing Systems
, pp. 29-39
-
-
Moody, J.E.1
-
12
-
-
1242331283
-
Multi-scale approximation with hierarchical radial basis functions networks
-
Jan
-
S. Ferrari, M. Maggioni, and N. A. Borghese, "Multi-scale approximation with hierarchical radial basis functions networks," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 178-188, Jan. 2004.
-
(2004)
IEEE Trans. Neural Netw
, vol.15
, Issue.1
, pp. 178-188
-
-
Ferrari, S.1
Maggioni, M.2
Borghese, N.A.3
-
13
-
-
76749171202
-
A hierarchical RBF online learning algorithm for real-time 3-D scanner
-
Feb.
-
S. Ferrari, F. Bellocchio, V. Piuri, and N. A. Borghese, "A hierarchical RBF online learning algorithm for real-time 3-D scanner," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 275-285, Feb. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.2
, pp. 275-285
-
-
Ferrari, S.1
Bellocchio, F.2
Piuri, V.3
Borghese, N.A.4
-
15
-
-
29344431527
-
Support vector machines for 3D shape processing
-
F. Steinke, B. Schölkopf, and V. Blanz, "Support vector machines for 3D shape processing," Comput. Graph. Forum, vol. 24, no. 3, pp. 285-294, 2005.
-
(2005)
Comput. Graph. Forum
, vol.24
, Issue.3
, pp. 285-294
-
-
Steinke, F.1
Schölkopf, B.2
Blanz, V.3
-
17
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Aug
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, pp. 119-139, Aug. 1997.
-
(1997)
J. Comput. Syst. Sci
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
18
-
-
0036568038
-
Boosting methods for regression
-
May
-
N. Duffy and D. Helmbold, "Boosting methods for regression," Mach. Learn., vol. 47, pp. 153-200, May 2002.
-
(2002)
Mach. Learn
, vol.47
, pp. 153-200
-
-
Duffy, N.1
Helmbold, D.2
-
19
-
-
73949120758
-
An effective method of pruning support vector machine classifiers
-
Jan.
-
X. Liang, "An effective method of pruning support vector machine classifiers," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 26-38, Jan. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.1
, pp. 26-38
-
-
Liang, X.1
-
20
-
-
0042466486
-
Minimal kernel classifiers
-
Mar
-
G. M. Fung, O. L. Mangasarian, and A. J. Smola, "Minimal kernel classifiers," J. Mach. Learn. Res., vol. 3, pp. 2303-321, Mar. 2002.
-
(2002)
J. Mach. Learn. Res
, vol.3
, pp. 2303-2321
-
-
Fung, G.M.1
Mangasarian, O.L.2
Smola, A.J.3
-
21
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
Jul
-
S. S. Keerthi, O. Chapelle, and D. D. Coste, "Building support vector machines with reduced classifier complexity," J. Mach. Learn. Res., vol. 7, pp. 1493-1515, Jul. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
Coste, D.D.3
-
22
-
-
33750069471
-
An efficient method for simplifying decision functions of support vector machines
-
Oct
-
J. Guo, N. Takahashi, and T. Nishi, "An efficient method for simplifying decision functions of support vector machines," IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E89-A, no. 10, pp. 2795-2802, Oct. 2006.
-
(2006)
IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
, vol.E89-A
, Issue.10
, pp. 2795-2802
-
-
Guo, J.1
Takahashi, N.2
Nishi, T.3
-
23
-
-
28244453270
-
SMO-based pruning methods for sparse least squares support vector machines
-
Nov
-
X. Zeng and X. Chen, "SMO-based pruning methods for sparse least squares support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1541-1546, Nov. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.6
, pp. 1541-1546
-
-
Zeng, X.1
Chen, X.2
-
24
-
-
31844434496
-
An efficient method for simplifying support vector machines
-
D. Nguyen and T. Ho, "An efficient method for simplifying support vector machines," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 617-624.
-
(2005)
Proc. 22nd Int. Conf. Mach. Learn
, pp. 617-624
-
-
Nguyen, D.1
Ho, T.2
-
25
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
Apr
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, Apr. 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
26
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press ch. 11
-
T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999, ch. 11, pp. 169-184.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
27
-
-
70350712299
-
Two heuristic strategies for searching optimal hyper parameters of C-SVM
-
D. Wang, X.-B. Wu, and D.-M. Lin, "Two heuristic strategies for searching optimal hyper parameters of C-SVM," in Proc. 8th Int. Conf. Mach. Learn. Cybern., 2009, pp. 3690-3695.
-
(2009)
Proc. 8th Int. Conf. Mach. Learn. Cybern
, pp. 3690-3695
-
-
Wang, D.1
Wu, X.-B.2
Lin, D.-M.3
-
28
-
-
67650469183
-
Efficient model selection for support vector machine with Gaussian kernel function
-
Apr
-
Y. Tang, W. Guo, and J. Gao, "Efficient model selection for support vector machine with Gaussian kernel function," in Proc. IEEE Symp. Comp. Intell. Data Mining, Apr. 2009, pp. 40-45.
-
(2009)
Proc IEEE Symp. Comp. Intell. Data Mining
, pp. 40-45
-
-
Tang, Y.1
Guo, W.2
Gao, J.3
-
29
-
-
0037721392
-
Asymptotically optimal choice of-loss for support vector machines
-
A. J. Smola, N. Murata, B. Schölkopf, and K.-R. Müller, "Asymptotically optimal choice of-loss for support vector machines," in Proc. 8th Int. Conf. Artif. Neural Netw., Perspect. Neural Comput., 1998, pp. 105-110.
-
(1998)
Proc. 8th Int. Conf. Artif. Neural Netw., Perspect. Neural Comput
, pp. 105-110
-
-
Smola, A.J.1
Murata, N.2
Schölkopf, B.3
Müller, K.-R.4
-
30
-
-
84876917979
-
-
Heteroscedastic Kernel Ridge Regression Demo Jul. [Online]. Available
-
Heteroscedastic Kernel Ridge Regression Demo. (2005, Jul.) [Online]. Available: http://theoval.cmp.uea.ac.uk/matlab/hkrr-demo/hkrr-demo.m
-
(2005)
-
-
-
31
-
-
4344609320
-
-
Jul 7 [Online]. Available
-
UCI Machine Learning Repository. (1993, Jul. 7) [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Housing
-
(1993)
UCI Machine Learning Repository
-
-
-
32
-
-
34249042729
-
Multiple kernel learning for support vector regression
-
Univ. New Mexico, Albuquerque, Tech. Rep. TR-CS-2005-42
-
S. Qiu and T. Lane, "Multiple kernel learning for support vector regression," Dept. Comput. Sci., Univ. New Mexico, Albuquerque, Tech. Rep. TR-CS-2005-42, 2005.
-
(2005)
Dept. Comput. Sci.
-
-
Qiu, S.1
Lane, T.2
-
33
-
-
33947363572
-
New learning paradigms in soft computing
-
Heidelberg, Germany: Physica-Verlag GmbH
-
M. Hasenjäger and H. Ritter, "New learning paradigms in soft computing," in Active Learning in Neural Networks. Heidelberg, Germany: Physica-Verlag GmbH, 2002, pp. 137-169.
-
(2002)
Active Learning in Neural Networks
, pp. 137-169
-
-
Hasenjäger, M.1
Ritter, H.2
-
34
-
-
0027632248
-
'Neuralgas' network for vector quantization and its application to time-series prediction
-
Jul
-
T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, "'Neuralgas' network for vector quantization and its application to time-series prediction," IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 558-568, Jul. 1993.
-
(1993)
IEEE Trans. Neural Netw
, vol.4
, Issue.4
, pp. 558-568
-
-
Martinetz, T.M.1
Berkovich, S.G.2
Schulten, K.J.3
-
35
-
-
67949110882
-
-
Piscataway NJ: IEEE Press
-
D. Wunsch and R. Xu, Clustering. Piscataway, NJ: IEEE Press, 2008.
-
(2008)
Clustering
-
-
Wunsch, D.1
Xu, R.2
-
36
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, no. 2, pp. 219-269, 1995.
-
(1995)
Neural Comput
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
|