-
2
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O.Chapelle, V.Vapnik, O.Bousqet et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 2002, 46(1):131-159 (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
4
-
-
0008200145
-
Adaptive regularization in neural network modeling
-
In: G.B.Orr, K.R.Mller,(Ed.) Springer, Berlin
-
J.Larsen, C.Svarer, L.N.Andersen et al. Adaptive regularization in neural network modeling. In: G.B.Orr, K.R.Mller,(Ed.), Neural Networks: Trick of the Trade. Springer, Berlin. 1998
-
(1998)
Neural Networks: Trick of the Trade
-
-
Larsen, J.1
Svarer, C.2
Andersen, L.N.3
-
5
-
-
0034241361
-
Gradient-based optimization of hyper-parameters
-
Y.Bengio, Gradient-based optimization of hyper-parameters. Neural Computation. 2000,12(8):1889-1900
-
(1889)
Neural Computation.2000
, vol.12
, Issue.8
-
-
Bengio, Y.1
-
6
-
-
33750124478
-
Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
-
DOI 10.1109/IJCNN.2005.1556085, 1556085, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
-
H.Frohlich, A.Zell. Efficient Parameter Selection for Support Vector Machines in Classification and Regression via Model-based Global optimization. in proc. International Joint Conference on Neural Networks. Canada, 2005:1431-1436 (Pubitemid 44591409)
-
(2005)
Proceedings of the International Joint Conference on Neural Networks
, vol.3
, pp. 1431-1436
-
-
Frohlich, H.1
Zell, A.2
-
7
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
-
K.Duan, S.S.Keerthi, A.N.Poo. Evaluation of simple performance measures for tuning SVM hyper parameters. Neurocomputing, 2003,51(4):41-59 (Pubitemid 36367224)
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
9
-
-
34548279044
-
Model selection for support vector machines via uniform design
-
DOI 10.1016/j.csda.2007.02.013, PII S0167947307000552
-
C.M.Huang, Y.J.Lee, D.K.Lin, S.Y.Huang. Model selection for support vector machines via uniform design. Computational Statistics & Data Analysis. 2007(52): 335-346 (Pubitemid 47331723)
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 335-346
-
-
Huang, C.-M.1
Lee, Y.-J.2
Lin, D.K.J.3
Huang, S.-Y.4
-
11
-
-
0345688978
-
Determination of the spread parameter in the Gaussian kernel for classification and regression
-
DOI 10.1016/S0925-2312(02)00632-X, PII S092523120200632X
-
W.J.Wang, Z.B.Xu, W.Z.Lu et al. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neruocomputing, 55:643-663, 2003 (Pubitemid 37455478)
-
(2003)
Neurocomputing
, vol.55
, Issue.3-4
, pp. 643-663
-
-
Wang, W.1
Xu, Z.2
Lu, W.3
Zhang, X.4
-
12
-
-
33750731977
-
Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination
-
DOI 10.1016/j.csda.2005.12.018, PII S0167947305003294
-
N.Louw and S.J.Steel. Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination. Computational statistis & data analysis. vol.51, pp.2043-2055, 2006 (Pubitemid 44709214)
-
(2006)
Computational Statistics and Data Analysis
, vol.51
, Issue.3
, pp. 2043-2055
-
-
Louw, N.1
Steel, S.J.2
-
13
-
-
9444279208
-
UCI repository of machine learning databases
-
University of California, Irvine, CA.
-
C.L.Blake, C.J.Merz. UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998
-
(1998)
Department of Information and Computer Science
-
-
Blake, C.L.1
Merz, C.J.2
|