메뉴 건너뛰기




Volumn , Issue , 2009, Pages 40-45

Efficient model selection for support vector machine with gaussian kernel function

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ABILITY; COMPLEX PARAMETER; CONVERGENT CHARACTER; CROSS VALIDATION; FEATURE SPACE; GAUSSIAN KERNEL FUNCTIONS; GAUSSIAN KERNELS; GENERALIZATION PERFORMANCE; KERNEL FUNCTION; MACHINE LEARNING METHODS; MODEL SELECTION; NEW PARAMETERS; ONE-DIMENSION; REAL WORLD DATA; REGULARIZATION PARAMETERS; SEARCH STRATEGIES; SIMILARITY MEASUREMENTS;

EID: 67650469183     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIDM.2009.4938627     Document Type: Conference Paper
Times cited : (47)

References (13)
  • 2
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O.Chapelle, V.Vapnik, O.Bousqet et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 2002, 46(1):131-159 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 4
    • 0008200145 scopus 로고    scopus 로고
    • Adaptive regularization in neural network modeling
    • In: G.B.Orr, K.R.Mller,(Ed.) Springer, Berlin
    • J.Larsen, C.Svarer, L.N.Andersen et al. Adaptive regularization in neural network modeling. In: G.B.Orr, K.R.Mller,(Ed.), Neural Networks: Trick of the Trade. Springer, Berlin. 1998
    • (1998) Neural Networks: Trick of the Trade
    • Larsen, J.1    Svarer, C.2    Andersen, L.N.3
  • 5
    • 0034241361 scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Y.Bengio, Gradient-based optimization of hyper-parameters. Neural Computation. 2000,12(8):1889-1900
    • (1889) Neural Computation.2000 , vol.12 , Issue.8
    • Bengio, Y.1
  • 6
    • 33750124478 scopus 로고    scopus 로고
    • Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
    • DOI 10.1109/IJCNN.2005.1556085, 1556085, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • H.Frohlich, A.Zell. Efficient Parameter Selection for Support Vector Machines in Classification and Regression via Model-based Global optimization. in proc. International Joint Conference on Neural Networks. Canada, 2005:1431-1436 (Pubitemid 44591409)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 1431-1436
    • Frohlich, H.1    Zell, A.2
  • 7
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • DOI 10.1016/S0925-2312(02)00601-X, PII S092523120200601X
    • K.Duan, S.S.Keerthi, A.N.Poo. Evaluation of simple performance measures for tuning SVM hyper parameters. Neurocomputing, 2003,51(4):41-59 (Pubitemid 36367224)
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 9
    • 34548279044 scopus 로고    scopus 로고
    • Model selection for support vector machines via uniform design
    • DOI 10.1016/j.csda.2007.02.013, PII S0167947307000552
    • C.M.Huang, Y.J.Lee, D.K.Lin, S.Y.Huang. Model selection for support vector machines via uniform design. Computational Statistics & Data Analysis. 2007(52): 335-346 (Pubitemid 47331723)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 335-346
    • Huang, C.-M.1    Lee, Y.-J.2    Lin, D.K.J.3    Huang, S.-Y.4
  • 11
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • DOI 10.1016/S0925-2312(02)00632-X, PII S092523120200632X
    • W.J.Wang, Z.B.Xu, W.Z.Lu et al. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neruocomputing, 55:643-663, 2003 (Pubitemid 37455478)
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3    Zhang, X.4
  • 12
    • 33750731977 scopus 로고    scopus 로고
    • Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination
    • DOI 10.1016/j.csda.2005.12.018, PII S0167947305003294
    • N.Louw and S.J.Steel. Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination. Computational statistis & data analysis. vol.51, pp.2043-2055, 2006 (Pubitemid 44709214)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.3 , pp. 2043-2055
    • Louw, N.1    Steel, S.J.2
  • 13
    • 9444279208 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • University of California, Irvine, CA.
    • C.L.Blake, C.J.Merz. UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998
    • (1998) Department of Information and Computer Science
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.