메뉴 건너뛰기




Volumn E89-A, Issue 10, 2006, Pages 2795-2802

An efficient method for simplifying decision functions of support vector machines

Author keywords

Complexity; Decision function; Span; Support vector machines

Indexed keywords

COMPUTATIONAL COMPLEXITY; FUNCTION EVALUATION; PERSONNEL TRAINING; VECTORS;

EID: 33750069471     PISSN: 09168508     EISSN: 17451337     Source Type: Journal    
DOI: 10.1093/ietfec/e89-a.10.2795     Document Type: Conference Paper
Times cited : (15)

References (17)
  • 5
    • 3142770128 scopus 로고    scopus 로고
    • Reducing the run-time complexity of support vector machine
    • Brisbane, Australia
    • E. Osuna and F. Girosi, "Reducing the run-time complexity of support vector machine," International Conf. on Pattern Recognition, pp.165-170, Brisbane, Australia, 1998.
    • (1998) International Conf. on Pattern Recognition , pp. 165-170
    • Osuna, E.1    Girosi, F.2
  • 6
    • 35048892478 scopus 로고    scopus 로고
    • Constructing support vector classifiers with unlabeled data
    • Springer
    • T. Wu and H. Zhao, "Constructing support vector classifiers with unlabeled data," Advances in Neural Networks-ISNN 2004, Part I, pp.494-499, Springer, 2004.
    • (2004) Advances in Neural Networks-ISNN 2004, Part I , pp. 494-499
    • Wu, T.1    Zhao, H.2
  • 7
    • 35048873195 scopus 로고    scopus 로고
    • A cascade method for reducing training time and the number of support vectors
    • Springer
    • Y. Wen and B. Lu, "A cascade method for reducing training time and the number of support vectors," Advances in Neural Networks-ISNN 2004, Part I, pp.480-486, Springer, 2004.
    • (2004) Advances in Neural Networks-ISNN 2004, Part I , pp. 480-486
    • Wen, Y.1    Lu, B.2
  • 8
    • 4644347704 scopus 로고    scopus 로고
    • Design efficient support vector machine for fast classification
    • Y. Zhan and D. Shen, "Design efficient support vector machine for fast classification," Pattern Recognit., vol.38, pp.157-161, 2005.
    • (2005) Pattern Recognit. , vol.38 , pp. 157-161
    • Zhan, Y.1    Shen, D.2
  • 11
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol.46, no.1, pp.131-159, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 12
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • V. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machines," Neural Comput., vol.12, no.9, pp.2013-2036, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 13
    • 85027195014 scopus 로고    scopus 로고
    • Considering span of support vector bounds in the context of computational learning theory
    • N. Montfort, "Considering span of support vector bounds in the context of computational learning theory," Report for Fernando Pereira and Lawrence Saul's CIS 620, 2004, http://nickm.com/cis/span_sv_and_colt.pdf
    • (2004) Report for Fernando Pereira and Lawrence Saul's CIS , vol.620
    • Montfort, N.1
  • 14
    • 85027167358 scopus 로고    scopus 로고
    • the PhD thesis: Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
    • O. Chapelle, "Estimating the performance of an SVM," in the PhD thesis: Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge, 2002, http://www.kyb.mpg.de/publications/pss/ps2167.gz
    • (2002) Estimating the Performance of An SVM
    • Chapelle, O.1
  • 15
    • 84926039412 scopus 로고    scopus 로고
    • IDA Benchmark Repository, http://ida.first.fraunhofer.de/projects/bench/ benchmarks.htm
    • IDA Benchmark Repository
  • 16
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • G. Rätsch, T. Onoda, and K.R. Müller, "Soft margins for AdaBoost," Mach. Learn., vol.42, no.3, pp.287-320, 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.