-
3
-
-
0002400882
-
Simplified support vector decision rules
-
L. Saitta, ed.
-
C.J.C. Burges, "Simplified support vector decision rules," Proc. 13th International Conf. on Machine Learning, L. Saitta, ed., vol.1112, pp.71-77, 1996.
-
(1996)
Proc. 13th International Conf. on Machine Learning
, vol.1112
, pp. 71-77
-
-
Burges, C.J.C.1
-
4
-
-
84898957872
-
Improving the accuracy and speed of support vector machines
-
The MIT Press
-
C.J.C. Burges and B. Schölkopf, "Improving the accuracy and speed of support vector machines," Advances in Neural Information Processing Systems, vol.9, pp.375-381, The MIT Press, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
5
-
-
3142770128
-
Reducing the run-time complexity of support vector machine
-
Brisbane, Australia
-
E. Osuna and F. Girosi, "Reducing the run-time complexity of support vector machine," International Conf. on Pattern Recognition, pp.165-170, Brisbane, Australia, 1998.
-
(1998)
International Conf. on Pattern Recognition
, pp. 165-170
-
-
Osuna, E.1
Girosi, F.2
-
6
-
-
35048892478
-
Constructing support vector classifiers with unlabeled data
-
Springer
-
T. Wu and H. Zhao, "Constructing support vector classifiers with unlabeled data," Advances in Neural Networks-ISNN 2004, Part I, pp.494-499, Springer, 2004.
-
(2004)
Advances in Neural Networks-ISNN 2004, Part I
, pp. 494-499
-
-
Wu, T.1
Zhao, H.2
-
7
-
-
35048873195
-
A cascade method for reducing training time and the number of support vectors
-
Springer
-
Y. Wen and B. Lu, "A cascade method for reducing training time and the number of support vectors," Advances in Neural Networks-ISNN 2004, Part I, pp.480-486, Springer, 2004.
-
(2004)
Advances in Neural Networks-ISNN 2004, Part I
, pp. 480-486
-
-
Wen, Y.1
Lu, B.2
-
8
-
-
4644347704
-
Design efficient support vector machine for fast classification
-
Y. Zhan and D. Shen, "Design efficient support vector machine for fast classification," Pattern Recognit., vol.38, pp.157-161, 2005.
-
(2005)
Pattern Recognit.
, vol.38
, pp. 157-161
-
-
Zhan, Y.1
Shen, D.2
-
9
-
-
33748997961
-
An efficient method for reducing the number of support vectors
-
Ireland
-
J. Guo, N. Takahashi, and T. Nishi, "An efficient method for reducing the number of support vectors," Proc. 17th European Conf. on Circuit Theory and Design, vol.3, pp.381-384, Ireland, 2005.
-
(2005)
Proc. 17th European Conf. on Circuit Theory and Design
, vol.3
, pp. 381-384
-
-
Guo, J.1
Takahashi, N.2
Nishi, T.3
-
11
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol.46, no.1, pp.131-159, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
12
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machines," Neural Comput., vol.12, no.9, pp.2013-2036, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
13
-
-
85027195014
-
Considering span of support vector bounds in the context of computational learning theory
-
N. Montfort, "Considering span of support vector bounds in the context of computational learning theory," Report for Fernando Pereira and Lawrence Saul's CIS 620, 2004, http://nickm.com/cis/span_sv_and_colt.pdf
-
(2004)
Report for Fernando Pereira and Lawrence Saul's CIS
, vol.620
-
-
Montfort, N.1
-
14
-
-
85027167358
-
-
the PhD thesis: Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
-
O. Chapelle, "Estimating the performance of an SVM," in the PhD thesis: Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge, 2002, http://www.kyb.mpg.de/publications/pss/ps2167.gz
-
(2002)
Estimating the Performance of An SVM
-
-
Chapelle, O.1
-
15
-
-
84926039412
-
-
IDA Benchmark Repository, http://ida.first.fraunhofer.de/projects/bench/ benchmarks.htm
-
IDA Benchmark Repository
-
-
-
16
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, and K.R. Müller, "Soft margins for AdaBoost," Mach. Learn., vol.42, no.3, pp.287-320, 2001.
-
(2001)
Mach. Learn.
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
17
-
-
0000359337
-
Back-propagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.J. Jackel, "Back-propagation applied to handwritten zip code recognition," Neural Comput., vol.1, pp.541-551, 1989.
-
(1989)
Neural Comput.
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.J.7
|