-
1
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
2
-
-
11144352445
-
Convergence of alternating optimization
-
December
-
James C. Bezdek and Richard J. Hathaway. Convergence of alternating optimization. Neural, Parallel Sci. Comput., 11:351-368, December 2003. ISSN 1061-5369.
-
(2003)
Neural, Parallel Sci. Comput.
, vol.11
, pp. 351-368
-
-
Bezdek, J.C.1
Hathaway, R.J.2
-
4
-
-
84858743760
-
Learning non-linear combinations of kernels
-
Mehryar Mohri Corinna Cortes and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, 2009a.
-
(2009)
NIPS
-
-
Cortes, M.M.C.1
Rostamizadeh, A.2
-
5
-
-
77956510585
-
L2 regularization for learning kernels
-
Mehryar Mohri Corinna Cortes and Afshin Rostamizadeh. L2 regularization for learning kernels. In UAI, 2009b.
-
(2009)
UAI
-
-
Cortes, M.M.C.1
Rostamizadeh, A.2
-
6
-
-
77956548520
-
Invited talk: Can learning kernels help performance?
-
Corinna Cortes. Invited talk: Can learning kernels help performance? In ICML, page 161, 2009.
-
(2009)
ICML
, pp. 161
-
-
Cortes, C.1
-
7
-
-
77956505061
-
Two-stage learning kernel algorithms
-
Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning kernel algorithms. In ICML, pages 239-246, 2010.
-
(2010)
ICML
, pp. 239-246
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
9
-
-
51049096780
-
Kernel methods in machine learning
-
Thomas Hofmann, Bernhard Scholkopf, and Alexander J. Smola. Kernel methods in machine learning. The Annals of Statistics, 36(3):1171-1220, 2008.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Scholkopf, B.2
Smola, A.J.3
-
10
-
-
34547975734
-
Learning non-parametric kernel matrices from pairwise constraints
-
OR, US, June 20-24
-
Steven C.H. Hoi, Rong Jin, and Michael R. Lyu. Learning non-parametric kernel matrices from pairwise constraints. In Proceedings of the 24th International Conference on Machine Learning (ICML2007), OR, US, June 20-24 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (ICML2007)
-
-
Hoi, S.C.H.1
Jin, R.2
Lyu, M.R.3
-
12
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Bellevue, Washington, USA, June
-
Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature learning. In Proc. 28th International Conference on Machine Learning (ICML'11), pages 521- 528, Bellevue, Washington, USA, June 2011.
-
(2011)
Proc. 28th International Conference on Machine Learning (ICML'11)
, pp. 521-528
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
13
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
Marius Kloft, Ulf Brefeld, Soren Sonnenburg, Pavel Laskov, Klaus-Robert Muller, and Alexander Zien. Efficient and accurate lp-norm multiple kernel learning. In NIPS, 2009.
-
(2009)
NIPS
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Muller, K.-R.5
Zien, A.6
-
14
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.L.3
Ghaoui, L.E.4
Jordan, M.I.5
-
15
-
-
84876829091
-
An unsupervised approach to learn the kernel functions: From global influence to local similarity
-
Dhanesh Ramachandram M. Ehsan Abbasnejad and Rajeswari Mandava. An unsupervised approach to learn the kernel functions: from global influence to local similarity. Neural Computing & Applications, 2010.
-
(2010)
Neural Computing & Applications
-
-
Abbasnejad, D.R.M.E.1
Mandava, R.2
-
16
-
-
84898970836
-
Kernel pca and de-noising in feature spaces
-
Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature spaces. In NIPS, pages 536-542, 1998.
-
(1998)
NIPS
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Müller, K.-R.4
Scholz, M.5
Rätsch, G.6
-
17
-
-
0000095809
-
An analysis of the approximations for maximizing submodular set functions
-
G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265-294, 1978.
-
(1978)
Mathematical Programming
, vol.14
, pp. 265-294
-
-
Nemhauser, G.1
Wolsey, L.2
Fisher, M.3
-
19
-
-
14644392676
-
-
Cambridge University Press, New York, NY, USA, ISBN 0521813972
-
John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY, USA, 2004. ISBN 0521813972.
-
(2004)
Kernel Methods for Pattern Analysis
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
20
-
-
33745776113
-
Large scale multiple kernel learning
-
Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
R̈tsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
21
-
-
33746031418
-
Learning bounds for support vector machines with learned kernels
-
Nathan Srebro and Shai Ben-David. Learning bounds for support vector machines with learned kernels. In COLT, pages 169-183, 2006.
-
(2006)
COLT
, pp. 169-183
-
-
Srebro, N.1
Ben-David, S.2
-
22
-
-
77956551904
-
Learning sparse svm for feature selection on very high dimensional datasets
-
Mingkui Tan, Li Wang, and Ivor W. Tsang. Learning sparse svm for feature selection on very high dimensional datasets. In ICML, pages 1047-1054, 2010.
-
(2010)
ICML
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.W.3
-
23
-
-
84864041449
-
Generalized maximum margin clustering and unsupervised kernel learning
-
Hamed Valizadegan and Rong Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, pages 1417-1424, 2006.
-
(2006)
NIPS
, pp. 1417-1424
-
-
Valizadegan, H.1
Jin, R.2
-
26
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An extended level method for efficient multiple kernel learning. In NIPS, pages 1825-1832, 2008.
-
(2008)
NIPS
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.R.4
-
27
-
-
77956547440
-
Simple and efficient multiple kernel learning by group lasso
-
Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and efficient multiple kernel learning by group lasso. In ICML, pages 1175-1182, 2010.
-
(2010)
ICML
, pp. 1175-1182
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, M.R.5
-
28
-
-
84898069211
-
Generalization bounds for learning the kernel
-
Yiming Ying and Colin Campbell. Generalization bounds for learning the kernel. In COLT, 2009.
-
(2009)
COLT
-
-
Ying, Y.1
Campbell, C.2
-
29
-
-
84863401481
-
Nonlinear learning using local coordinate coding
-
Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local coordinate coding. In NIPS, 2009.
-
(2009)
NIPS
-
-
Yu, K.1
Zhang, T.2
Gong, Y.3
-
30
-
-
84876860477
-
Multiple kernel clustering
-
Bin Zhao, James T. Kwok, and Changshui Zhang. Multiple kernel clustering. In SDM, pages 638-649, 2009.
-
(2009)
SDM
, pp. 638-649
-
-
Zhao, B.1
Kwok, J.T.2
Zhang, C.3
-
32
-
-
84876836567
-
Two-layer multiple kernel learning
-
Jinfeng Zhuang, IvorW. Tsang, and Steven C. H. Hoi. Two-layer multiple kernel learning. In JMLR Workshop and Conference Proceedings (AISTATS-2010), volume 9, pages 988-995, 2011a.
-
(2011)
JMLR Workshop and Conference Proceedings (AISTATS-2010)
, vol.9
, pp. 988-995
-
-
Zhuang, J.1
Tsang, Ivorw.2
Hoi, S.C.H.3
|