메뉴 건너뛰기




Volumn 18, Issue 1, 2013, Pages 115-120

Comparison of artificial neural network models for sediment yield prediction at single gauging station of watershed in eastern India

Author keywords

Artificial neural network; Radial base neural network; Runoff sediment modeling; Standard back propagation

Indexed keywords

AGRICULTURAL WATERSHEDS; ARTIFICIAL NEURAL NETWORK MODELS; CORRELATION COEFFICIENT; FORESTED WATERSHEDS; LINEAR COEFFICIENTS; NEURAL NETWORK MODEL; RADIAL BASIS NEURAL NETWORKS; ROOT-MEAN SQUARE ERRORS;

EID: 84876838740     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000601     Document Type: Article
Times cited : (23)

References (26)
  • 1
    • 84855849356 scopus 로고    scopus 로고
    • Forecasting of runoff and sediment yield using artificial neural networks
    • Agarwal, A., Rai, R. K., and Upadhyay, A. (2009). "Forecasting of runoff and sediment yield using artificial neural networks." J. Water Res. Protect., 1(05), 368-375.
    • (2009) J. Water Res. Protect , vol.1 , Issue.5 , pp. 368-375
    • Agarwal, A.1    Rai, R.K.2    Upadhyay, A.3
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). "Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrol. Eng., 5(2), 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). "Artificial neural networks in hydrology. II: Hydrologic applications." J. Hydrol. Eng., 5(2), 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu, H. K., and Kisi, O. (2006). "Methods to improve the neural network performance in suspended sediment estimation." J. Hydrol., 317(3-4), 221-238.
    • (2006) J. Hydrol. , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 5
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, C. W., and Wilby, R. L. (1998). "An artificial neural network approach to rainfall-runoff modeling." Hydrol. Sci. J., 43(1), 47-65.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-65
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., and Wilby, R. L. (2001). "Hydrological modelling using artificial neural networks." Prog. Phys. Geog., 25(1), 80-108.
    • (2001) Prog. Phys. Geog. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 7
    • 79952651315 scopus 로고    scopus 로고
    • An ANN-based approach to modelling sediment yield: a case study in a semi-arid area of Brazil
    • International Commission on Continental Erosion, Rennes, France
    • De Farias, C. A. S., Alves, F. M., Santos, C. A. G., and Koichi, S. (2010). "An ANN-based approach to modelling sediment yield: a case study in a semi-arid area of Brazil." Proc., ICCE Symp.: Sediment Dynamics for a Changing Future, International Commission on Continental Erosion, Rennes, France, 337, 316-321.
    • (2010) Proc., ICCE Symp.: Sediment Dynamics for a Changing Future , vol.37 , pp. 316-321
    • De Farias, C.A.S.1    Alves, F.M.2    Santos, C.A.G.3    Koichi, S.4
  • 8
    • 67349141656 scopus 로고    scopus 로고
    • DTREG Predictive Modeling Software [Computer software].
    • (May 31, 2009).
    • DTREG Predictive Modeling Software [Computer software]. (2009). Phillip H. Sherrod, www.dtreg.com (May 31, 2009).
    • (2009)
    • Sherrod, P.H.1
  • 10
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modeling
    • Giustolisi, O., and Laucelli, D. (2005). "Improving generalization of artificial neural networks in rainfall-runoff modeling." Hydrol. Sci. J., 50(3), 439-457.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 11
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K. L., Gupta, H. V., and Sorooshian, S. (1995). "Artificial neural network modeling of the rainfall-runoff process." Water Resour. Res., 31(10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 12
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A., and Srinivasulu, S. (2006). "Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques." J. Hydrol., 317(3-4), 291-306.
    • (2006) J. Hydrol. , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 14
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfallrunoff transformations
    • Lorrai, M., and Sechi, G. M. (1995). "Neural nets for modelling rainfallrunoff transformations." Water Res. Manage., 9(4), 299-313.
    • (1995) Water Res. Manage. , vol.9 , Issue.4 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 15
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications." Environ. Modell. Softw., 15(1), 101-124.
    • (2000) Environ. Modell. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 16
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns, A.W., and Hall, M. J. (1996). "Artificial neural networks as rainfall runoff models." Hydrol. Sci. J., 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 17
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu, E., Chaubey, I., Hexmoor, H., and Bajwa, S. G. (2008). "Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed." Hydrol. Processes, 22(26), 50-97.
    • (2008) Hydrol. Processes , vol.22 , Issue.26 , pp. 50-97
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 18
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: Part I. A discussion of principles
    • Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." J. Hydrol., 10(3), 282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 19
    • 84876837255 scopus 로고    scopus 로고
    • NeuralWorks Professional II/Plus [Computer software]
    • NeuralWare, Pittsburgh.
    • NeuralWorks Professional II/Plus [Computer software]. NeuralWare, Pittsburgh.
  • 20
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi, N. S., Singh, R., and Reddy, L. S. (2006). Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Eng., 11(1), 71-79.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 21
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M. P., Kothyari, U. C., and Chaube, U. C. (2002). "Artificial neural networks for daily rainfall-runoff modelling." Hydrol. Sci. J., 47(6), 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 22
    • 28844436447 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India
    • Sarangi, A., and Bhattacharya, A. K. (2005). "Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India." Agric. Water Manage., 78(3), 195-208.
    • (2005) Agric. Water Manage. , vol.78 , Issue.3 , pp. 195-208
    • Sarangi, A.1    Bhattacharya, A.K.2
  • 23
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall runoff modeling using artificial neural networks
    • Tokar, A. S., and Johnson, P. A. (1999). "Rainfall runoff modeling using artificial neural networks." J. Hydrol. Eng., 4(3), 232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 24
    • 76549088933 scopus 로고    scopus 로고
    • Neural networks approaches for modelling river suspended sediment concentration due to tropical storms
    • Wang, Y. M., Kerh, T., and Traore, S. (2009). "Neural networks approaches for modelling river suspended sediment concentration due to tropical storms." Global NEST J., 11(4), 457-466.
    • (2009) Global NEST J. , vol.11 , Issue.4 , pp. 457-466
    • Wang, Y.M.1    Kerh, T.2    Traore, S.3
  • 25
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J., and Dawson, C. W. (2003). "Detection of conceptual model rainfall-runoff processes inside an artificial neural network." Hydrol. Sci. J., 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 26
    • 77953485028 scopus 로고    scopus 로고
    • A comparative study on prediction of sediment yield in the Euphrates Basin
    • Yenigün, K., Mahmut, B., Reşit, G., and Mehmet, M. (2010). "A comparative study on prediction of sediment yield in the Euphrates Basin." Int. J. Phys. Sci., 5(5), 518-534.
    • (2010) Int. J. Phys. Sci. , vol.5 , Issue.5 , pp. 518-534
    • Yenigün, K.1    Mahmut, B.2    Reşit, G.3    Mehmet, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.