메뉴 건너뛰기




Volumn 1, Issue 2, 2011, Pages 75-86

A glance at DNA microarray technology and applications

Author keywords

Data mining; Gene expression profiling; Microarray; Omics

Indexed keywords

COMPLEMENTARY DNA; MESSENGER RNA;

EID: 84876701689     PISSN: 22285652     EISSN: 22285660     Source Type: Journal    
DOI: 10.5681/bi.2011.011     Document Type: Review
Times cited : (12)

References (79)
  • 1
    • 84890555315 scopus 로고    scopus 로고
    • Global Analysis of Differential Gene Expression Between Prostate Cancer and Normal Prostate Tissues Using CDNA Microarray of Open-Reading Frame Expressed Sequence Tags (ORESTES)
    • 2000. Global Analysis of Differential Gene Expression Between Prostate Cancer and Normal Prostate Tissues Using CDNA Microarray of Open-Reading Frame Expressed Sequence Tags (ORESTES). Prostate Cancer Prostatic Dis, 3(S1), S36.
    • (2000) Prostate Cancer Prostatic Dis , vol.3 , Issue.S1
  • 2
    • 3042783278 scopus 로고    scopus 로고
    • Profiling of Differentially Expressed Genes in Human Gingival Epithelial Cells and Fibroblasts by DNA Microarray
    • Abiko Y, Hiratsuka K, Kiyama-Kishikawa M, Tsushima K, Ohta M and Sasahara H. 2004. Profiling of Differentially Expressed Genes in Human Gingival Epithelial Cells and Fibroblasts by DNA Microarray. J Oral Sci, 46(1), 19-24.
    • (2004) J Oral Sci , vol.46 , Issue.1 , pp. 19-24
    • Abiko, Y.1    Hiratsuka, K.2    Kiyama-kishikawa, M.3    Tsushima, K.4    Ohta, M.5    Sasahara, H.6
  • 3
    • 33947499580 scopus 로고    scopus 로고
    • Microarray Analysis of Hepatic Genes Differentially Expressed in the Presence of the Unsaponifiable Fraction of Olive Oil in Apolipoprotein E-Deficient Mice
    • Acin S, Navarro MA, Perona JS, Surra JC, Guillen N, Arnal C et al. 2007. Microarray Analysis of Hepatic Genes Differentially Expressed in the Presence of the Unsaponifiable Fraction of Olive Oil in Apolipoprotein E-Deficient Mice. Br J Nutr, 97(4), 628-638.
    • (2007) Br J Nutr , vol.97 , Issue.4 , pp. 628-638
    • Acin, S.1    Navarro, M.A.2    Perona, J.S.3    Surra, J.C.4    Guillen, N.5    Arnal, C.6
  • 4
    • 0033214657 scopus 로고    scopus 로고
    • Application of Complementary DNA Microarray Technology to Carcinogen Identification, Toxicology, and Drug Safety Evaluation
    • Afshari CA, Nuwaysir EF and Barrett JC. 1999. Application of Complementary DNA Microarray Technology to Carcinogen Identification, Toxicology, and Drug Safety Evaluation. Cancer Res, 59(19), 4759-60.
    • (1999) Cancer Res , vol.59 , Issue.19 , pp. 4759-4760
    • Afshari, C.A.1    Nuwaysir, E.F.2    Barrett, J.C.3
  • 6
    • 2442695245 scopus 로고    scopus 로고
    • What You See May Not Be What You Get: a Brief, Nontechnical Introduction to Overfitting in Regression-Type Models
    • Babyak MA. 2004. What You See May Not Be What You Get: a Brief, Nontechnical Introduction to Overfitting in Regression-Type Models. Psychosom Med, 66(3), 411-421.
    • (2004) Psychosom Med , vol.66 , Issue.3 , pp. 411-421
    • Babyak, M.A.1
  • 7
    • 70350336452 scopus 로고    scopus 로고
    • Genomic Signature and Toxicogenomics Comparison of Polycationic Gene Delivery Nanosystems in Human Alveolar Epithelial A549 Cells
    • Barar J, Hamzeiy H, Mortazavi-Tabatabaei SA, Hashemi-Aghdam SE and Omidi Y. 2009. Genomic Signature and Toxicogenomics Comparison of Polycationic Gene Delivery Nanosystems in Human Alveolar Epithelial A549 Cells. Daru, 17(3), 139-147.
    • (2009) Daru , vol.17 , Issue.3 , pp. 139-147
    • Barar, J.1    Hamzeiy, H.2    Mortazavi-tabatabaei, S.A.3    Hashemi-aghdam, S.E.4    Omidi, Y.5
  • 8
    • 0033863518 scopus 로고    scopus 로고
    • DNA Microarray Technology and Application.)
    • Bednár M. 2000. DNA Microarray Technology and Application.). Med Sci Monit, 6(4), 796-800.
    • (2000) Med Sci Monit , vol.6 , Issue.4 , pp. 796-800
    • Bednár, M.1
  • 9
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: Accurate Estimation of Missing Values in Microarray Data With Least Squares Methods
    • Bo TH, Dysvik B and Jonassen I. 2004. LSimpute: Accurate Estimation of Missing Values in Microarray Data With Least Squares Methods. Nucleic Acids Res, 32(3), e34.
    • (2004) Nucleic Acids Res , vol.32 , Issue.3
    • Bo, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 11
    • 23844434593 scopus 로고    scopus 로고
    • Unsupervised Pattern Recognition: an Introduction to the Whys and Wherefores of Clustering Microarray Data
    • Boutros PC and Okey AB. 2005. Unsupervised Pattern Recognition: an Introduction to the Whys and Wherefores of Clustering Microarray Data. Brief Bioinform, 6(4), 331-343.
    • (2005) Brief Bioinform , vol.6 , Issue.4 , pp. 331-343
    • Boutros, P.C.1    Okey, A.B.2
  • 13
    • 0038494601 scopus 로고    scopus 로고
    • Graphical Methods for Class Prediction Using Dimension Reduction Techniques on DNA Microarray Data
    • Bura E and Pfeiffer RM. 2003. Graphical Methods for Class Prediction Using Dimension Reduction Techniques on DNA Microarray Data. Bioinformatics, 19(10), 1252-8.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1252-1258
    • Bura, E.1    Pfeiffer, R.M.2
  • 14
    • 10844222494 scopus 로고    scopus 로고
    • Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate
    • Caetano AR, Johnson RK, Ford JJ and Pomp D. 2004. Microarray Profiling for Differential Gene Expression in Ovaries and Ovarian Follicles of Pigs Selected for Increased Ovulation Rate. Genetics, 168(3), 1529-1537.
    • (2004) Genetics , vol.168 , Issue.3 , pp. 1529-1537
    • Caetano, A.R.1    Johnson, R.K.2    Ford, J.J.3    Pomp, D.4
  • 16
    • 34948844661 scopus 로고    scopus 로고
    • A Multiple Kernel Support Vector Machine Scheme for Feature Selection and Rule Extraction From Gene Expression Data of Cancer Tissue
    • Chen Z, Li J and Wei L. 2007. A Multiple Kernel Support Vector Machine Scheme for Feature Selection and Rule Extraction From Gene Expression Data of Cancer Tissue. Artif Intell Med, 41(2), 161-175.
    • (2007) Artif Intell Med , vol.41 , Issue.2 , pp. 161-175
    • Chen, Z.1    Li, J.2    Wei, L.3
  • 17
    • 54949139489 scopus 로고    scopus 로고
    • False Discovery Rate Paradigms for Statistical Analyses of Microarray Gene Expression Data
    • Cheng C and Pounds S. 2007. False Discovery Rate Paradigms for Statistical Analyses of Microarray Gene Expression Data. Bioinformation, 1(10), 436-446.
    • (2007) Bioinformation , vol.1 , Issue.10 , pp. 436-446
    • Cheng, C.1    Pounds, S.2
  • 18
    • 0036909061 scopus 로고    scopus 로고
    • Application of DNA Microarrays in Pharmacogenomics and Toxicogenomics
    • Chin KV and Kong AN. 2002. Application of DNA Microarrays in Pharmacogenomics and Toxicogenomics. Pharm Res, 19(12), 1773-1778.
    • (2002) Pharm Res , vol.19 , Issue.12 , pp. 1773-1778
    • Chin, K.V.1    Kong, A.N.2
  • 19
    • 33645579248 scopus 로고    scopus 로고
    • Hybrid Hierarchical Clustering With Applications to Microarray Data
    • Chipman H and Tibshirani R. 2006. Hybrid Hierarchical Clustering With Applications to Microarray Data. Biostatistics, 7(2), 286-301.
    • (2006) Biostatistics , vol.7 , Issue.2 , pp. 286-301
    • Chipman, H.1    Tibshirani, R.2
  • 20
    • 33644875477 scopus 로고    scopus 로고
    • Applications of Support Vector Machines to Cancer Classification With Microarray Data
    • Chu F and Wang L. 2005. Applications of Support Vector Machines to Cancer Classification With Microarray Data. Int J Neural Syst, 15(6), 475-484.
    • (2005) Int J Neural Syst , vol.15 , Issue.6 , pp. 475-484
    • Chu, F.1    Wang, L.2
  • 21
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of Experimental Design for CDNA Microarrays
    • Churchill GA. 2002. Fundamentals of Experimental Design for CDNA Microarrays. Nat Genet, 32 Suppl, 490-5.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL. , pp. 490-495
    • Churchill, G.A.1
  • 22
    • 0142009811 scopus 로고    scopus 로고
    • Molecular Classification of Cancer: Unsupervised Self-Organizing Map Analysis of Gene Expression Microarray Data
    • Covell DG, Wallqvist A, Rabow AA and Thanki N. 2003. Molecular Classification of Cancer: Unsupervised Self-Organizing Map Analysis of Gene Expression Microarray Data. Mol Cancer Ther, 2(3), 317-332.
    • (2003) Mol Cancer Ther , vol.2 , Issue.3 , pp. 317-332
    • Covell, D.G.1    Wallqvist, A.2    Rabow, A.A.3    Thanki, N.4
  • 23
    • 0037276175 scopus 로고    scopus 로고
    • Statistical Tests for Differential Expression in CDNA Microarray Experiments.
    • Epub 2003 Mar 17
    • Cui X, Churchill GA. 2003. Statistical Tests for Differential Expression in CDNA Microarray Experiments. Genome Biol, 4(4), 210. Epub 2003 Mar 17.
    • (2003) Genome Biol , vol.4 , Issue.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 24
    • 33646383088 scopus 로고    scopus 로고
    • Dimension Reduction for Classification With Gene Expression Microarray Data
    • Article6. Epub 2006 Feb 24.
    • Dai JJ, Lieu L, Rocke D. 2006. Dimension Reduction for Classification With Gene Expression Microarray Data. Stat Appl Genet Mol Biol, Article6. Epub 2006 Feb 24.
    • (2006) Stat Appl Genet Mol Biol
    • Dai, J.J.1    Lieu, L.2    Rocke, D.3
  • 25
    • 4444331809 scopus 로고    scopus 로고
    • Analysis of Differentially Expressed Genes in Hyperthyroid-Induced Hypertrophied Heart by CDNA Microarray
    • De K, Ghosh G, Datta M, Konar A, Bandyopadhyay J, Bandyopadhyay D et al. 2004. Analysis of Differentially Expressed Genes in Hyperthyroid-Induced Hypertrophied Heart by CDNA Microarray. J Endocrinol, 182(2), 303-314.
    • (2004) J Endocrinol , vol.182 , Issue.2 , pp. 303-314
    • De, K.1    Ghosh, G.2    Datta, M.3    Konar, A.4    Bandyopadhyay, J.5    Bandyopadhyay, D.6
  • 26
    • 0037107935 scopus 로고    scopus 로고
    • From Microarrays to Networks: Mining Expression Time Series
    • Dewey TG. 2002. From Microarrays to Networks: Mining Expression Time Series. Drug Discovery Today, 7(20), s170-s175.
    • (2002) Drug Discovery Today , vol.7 , Issue.20
    • Dewey, T.G.1
  • 27
    • 0036889822 scopus 로고    scopus 로고
    • Microarray Technology: an Array of Applications That Is Far From Micro
    • Dixon B. 2002. Microarray Technology: an Array of Applications That Is Far From Micro. Biotechnol Adv, 20(5-6), 361-362.
    • (2002) Biotechnol Adv , vol.20 , Issue.5-6 , pp. 361-362
    • Dixon, B.1
  • 30
    • 0036100833 scopus 로고    scopus 로고
    • Analysis Techniques for Microarray Time-Series Data
    • Filkov V, Skiena S and Zhi J. 2002. Analysis Techniques for Microarray Time-Series Data. J Comput Biol, 9(2), 317-330.
    • (2002) J Comput Biol , vol.9 , Issue.2 , pp. 317-330
    • Filkov, V.1    Skiena, S.2    Zhi, J.3
  • 31
    • 0036489209 scopus 로고    scopus 로고
    • Current Themes in Microarray Experimental Design and Analysis
    • Foster WR, Huber RM. 2002. Current Themes in Microarray Experimental Design and Analysis. Drug Discov Today, 7(5), 290-2.
    • (2002) Drug Discov Today , vol.7 , Issue.5 , pp. 290-292
    • Foster, W.R.1    Huber, R.M.2
  • 32
    • 0033636139 scopus 로고    scopus 로고
    • Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M and Haussler D. 2000. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics, 16(10), 906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 33
    • 0043089918 scopus 로고    scopus 로고
    • Transformation and Normalization of Oligonucleotide Microarray Data
    • Geller SC, Gregg JP, Hagerman P, Rocke DM. 2003. Transformation and Normalization of Oligonucleotide Microarray Data. Bioinformatics, 19(14),1817-23.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1817-1823
    • Geller, S.C.1    Gregg, J.P.2    Hagerman, P.3    Rocke, D.M.4
  • 35
    • 19344366781 scopus 로고    scopus 로고
    • A Practical False Discovery Rate Approach to Identifying Patterns of Differential Expression in Microarray Data
    • Grant GR, Liu J and Stoeckert CJ, Jr. 2005. A Practical False Discovery Rate Approach to Identifying Patterns of Differential Expression in Microarray Data. Bioinformatics, 21(11), 2684-2690.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2684-2690
    • Grant, G.R.1    Liu, J.2    Stoeckert Jr., C.J.3
  • 36
    • 33947172745 scopus 로고    scopus 로고
    • Identification of Differentially Expressed Genes and False Discovery Rate in Microarray Studies
    • Gusnanto A, Calza S and Pawitan Y. 2007. Identification of Differentially Expressed Genes and False Discovery Rate in Microarray Studies. Curr Opin Lipidol, 18(2), 187-193.
    • (2007) Curr Opin Lipidol , vol.18 , Issue.2 , pp. 187-193
    • Gusnanto, A.1    Calza, S.2    Pawitan, Y.3
  • 37
    • 1642380461 scopus 로고    scopus 로고
    • The Problem of Overfitting
    • Hawkins DM. 2004. The Problem of Overfitting. J Chem Inf Comput Sci, 44(1), 1-12.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 38
    • 3042803763 scopus 로고    scopus 로고
    • Microarray Image Processing: Current Status and Future Directions
    • Istepanian RS. 2003. Microarray Image Processing: Current Status and Future Directions. IEEE Trans Nanobioscience, 2(4),173-5.
    • (2003) IEEE Trans Nanobioscience , vol.2 , Issue.4 , pp. 173-175
    • Istepanian, R.S.1
  • 39
    • 25444528447 scopus 로고    scopus 로고
    • Feature Selection and Classification for Microarray Data Analysis: Evolutionary Methods for Identifying Predictive Genes
    • Jirapech-Umpai T and Aitken S. 2005. Feature Selection and Classification for Microarray Data Analysis: Evolutionary Methods for Identifying Predictive Genes. BMC Bioinformatics, 6, 148.
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Jirapech-umpai, T.1    Aitken, S.2
  • 40
    • 40449111098 scopus 로고    scopus 로고
    • Bioinformatics: Microarray Data Clustering and Functional Classification
    • Juan HF and Huang HC. 2007. Bioinformatics: Microarray Data Clustering and Functional Classification. Methods Mol Biol, 382), 405-416.
    • (2007) Methods Mol Biol , vol.382 , pp. 405-416
    • Juan, H.F.1    Huang, H.C.2
  • 42
    • 3042726883 scopus 로고    scopus 로고
    • Methods for Automatic Microarray Image Segmentation
    • Katzer M, Kummert F and Sagerer G. 2003. Methods for Automatic Microarray Image Segmentation. IEEE Trans Nanobioscience, 2(4), 202-214.
    • (2003) IEEE Trans Nanobioscience , vol.2 , Issue.4 , pp. 202-214
    • Katzer, M.1    Kummert, F.2    Sagerer, G.3
  • 43
    • 9144240190 scopus 로고    scopus 로고
    • Experimental Design to Make the Most of Microarray Studies
    • Kerr MK. 2003. Experimental Design to Make the Most of Microarray Studies. Methods Mol Biol, 224,137-47.
    • (2003) Methods Mol Biol , vol.224 , pp. 137-147
    • Kerr, M.K.1
  • 44
    • 0034954414 scopus 로고    scopus 로고
    • Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks
    • Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F et al. 2001. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nat Med, 7(6), 673-679.
    • (2001) Nat Med , vol.7 , Issue.6 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3    Saal, L.H.4    Ladanyi, M.5    Westermann, F.6
  • 45
    • 13444304426 scopus 로고    scopus 로고
    • Missing Value Estimation for DNA Microarray Gene Expression Data: Local Least Squares Imputation
    • Epub 2004 Aug 27
    • Kim H, Golub GH and Park H. 2004. Missing Value Estimation for DNA Microarray Gene Expression Data: Local Least Squares Imputation. Bioinformatics, 21(2),187-98. Epub 2004 Aug 27.
    • (2004) Bioinformatics , vol.21 , Issue.2 , pp. 187-198
    • Kim, H.1    Golub, G.H.2    Park, H.3
  • 46
    • 0034570871 scopus 로고    scopus 로고
    • Correspondence Analysis of Genes and Tissue Types and Finding Genetic Links From Microarray Data
    • Kishino H and Waddell PJ. 2000. Correspondence Analysis of Genes and Tissue Types and Finding Genetic Links From Microarray Data. Genome Inform Ser Workshop Genome Inform, 11), 83-95.
    • (2000) Genome Inform Ser Workshop Genome Inform , vol.11 , pp. 83-95
    • Kishino, H.1    Waddell, P.J.2
  • 47
    • 34547667386 scopus 로고    scopus 로고
    • Signal Processing and the Design of Microarray Time-Series Experiments
    • Klevecz RR, Li CM and Bolen JL. 2007. Signal Processing and the Design of Microarray Time-Series Experiments. Methods Mol Biol, 377, 75-94.
    • (2007) Methods Mol Biol , vol.377 , pp. 75-94
    • Klevecz, R.R.1    Li, C.M.2    Bolen, J.L.3
  • 48
  • 49
    • 65549136186 scopus 로고    scopus 로고
    • An Introduction to Artificial Neural Networks in Bioinformatics--Application to Complex Microarray and Mass Spectrometry Datasets in Cancer Studies
    • Epub 2009 Mar 23
    • Lancashire LJ, Lemetre C and Ball GR. 2009. An Introduction to Artificial Neural Networks in Bioinformatics--Application to Complex Microarray and Mass Spectrometry Datasets in Cancer Studies. Brief Bioinform, 10(3), 315-29. Epub 2009 Mar 23.
    • (2009) Brief Bioinform , vol.10 , Issue.3 , pp. 315-329
    • Lancashire, L.J.1    Lemetre, C.2    Ball, G.R.3
  • 50
    • 33751354609 scopus 로고    scopus 로고
    • Evaluating the Performance of Microarray Segmentation Algorithms
    • Lehmussola A, Ruusuvuori P and Yli-Harja O. 2006. Evaluating the Performance of Microarray Segmentation Algorithms. Bioinformatics, 22(23), 2910-2917.
    • (2006) Bioinformatics , vol.22 , Issue.23 , pp. 2910-2917
    • Lehmussola, A.1    Ruusuvuori, P.2    Yli-harja, O.3
  • 51
    • 52249114284 scopus 로고    scopus 로고
    • Selecting Subsets of Newly Extracted Features From PCA and PLS in Microarray Data Analysis
    • Li GZ, Bu HL, Yang MQ, Zeng XQ and Yang JY. 2008. Selecting Subsets of Newly Extracted Features From PCA and PLS in Microarray Data Analysis. BMC Genomics, 9 Suppl 2, S24.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 2
    • Li, G.Z.1    Bu, H.L.2    Yang, M.Q.3    Zeng, X.Q.4    Yang, J.Y.5
  • 52
    • 40449118776 scopus 로고    scopus 로고
    • Microarray Data Classified by Artificial Neural Networks
    • Linder R, Richards T and Wagner M. 2007. Microarray Data Classified by Artificial Neural Networks. Methods Mol Biol, 382, 345-372.
    • (2007) Methods Mol Biol , vol.382 , pp. 345-372
    • Linder, R.1    Richards, T.2    Wagner, M.3
  • 53
    • 0037202583 scopus 로고    scopus 로고
    • Block Principal Component Analysis With Application to Gene Microarray Data Classification
    • Liu A, Zhang Y, Gehan E and Clarke R. 2002. Block Principal Component Analysis With Application to Gene Microarray Data Classification. Stat Med, 21(22), 3465-3474.
    • (2002) Stat Med , vol.21 , Issue.22 , pp. 3465-3474
    • Liu, A.1    Zhang, Y.2    Gehan, E.3    Clarke, R.4
  • 55
    • 4644285491 scopus 로고    scopus 로고
    • Hierarchical Clustering Analysis of Tissue Microarray Immunostaining Data Identifies Prognostically Significant Groups of Breast Carcinoma
    • Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MC et al. 2004. Hierarchical Clustering Analysis of Tissue Microarray Immunostaining Data Identifies Prognostically Significant Groups of Breast Carcinoma. Clin Cancer Res, 10(18 Pt 1), 6143-6151.
    • (2004) Clin Cancer Res , vol.10 , Issue.18 PART 1 , pp. 6143-6151
    • Makretsov, N.A.1    Huntsman, D.G.2    Nielsen, T.O.3    Yorida, E.4    Peacock, M.5    Cheang, M.C.6
  • 56
    • 34249010864 scopus 로고    scopus 로고
    • Gene Networks Reconstruction and Time-Series Prediction From Microarray Data Using Recurrent Neural Fuzzy Networks
    • Maraziotis IA, Dragomir A and Bezerianos A. 2007. Gene Networks Reconstruction and Time-Series Prediction From Microarray Data Using Recurrent Neural Fuzzy Networks. IET Syst Biol, 1(1), 41-50.
    • (2007) IET Syst Biol , vol.1 , Issue.1 , pp. 41-50
    • Maraziotis, I.A.1    Dragomir, A.2    Bezerianos, A.3
  • 57
    • 39749157174 scopus 로고    scopus 로고
    • Automatic Classification of Asymptomatic and Osteoarthritis Knee Gait Patterns Using Kinematic Data Features and the Nearest Neighbor Classifier
    • Mezghani N, Husse S, Boivin K, Turcot K, Aissaoui R, Hagemeister N et al. 2008. Automatic Classification of Asymptomatic and Osteoarthritis Knee Gait Patterns Using Kinematic Data Features and the Nearest Neighbor Classifier. IEEE Trans Biomed Eng, 55(3), 1230-1232.
    • (2008) IEEE Trans Biomed Eng , vol.55 , Issue.3 , pp. 1230-1232
    • Mezghani, N.1    Husse, S.2    Boivin, K.3    Turcot, K.4    Aissaoui, R.5    Hagemeister, N.6
  • 58
    • 0141864405 scopus 로고    scopus 로고
    • Tutorials in Clinical Research: VII. Understanding Comparative Statistics (Contrast)--Part B: Application of TTest, Mann-Whitney U, and Chi-Square
    • Neely JG, Hartman JM, Forsen JW Jr, Wallace MS. 2003. Tutorials in Clinical Research: VII. Understanding Comparative Statistics (Contrast)--Part B: Application of TTest, Mann-Whitney U, and Chi-Square. Laryngoscope, 113(10), 1719-25.
    • (2003) Laryngoscope , vol.113 , Issue.10 , pp. 1719-1725
    • Neely, J.G.1    Hartman, J.M.2    Forsen Jr., J.W.3    Wallace, M.S.4
  • 59
    • 0142192759 scopus 로고    scopus 로고
    • Neural Network Analysis of Lymphoma Microarray Data: Prognosis and Diagnosis Near-Perfect
    • Epub 2003 Apr 10
    • O'Neill MC and Song L. 2003. Neural Network Analysis of Lymphoma Microarray Data: Prognosis and Diagnosis Near-Perfect. BMC Bioinformatics, 4:13. Epub 2003 Apr 10.
    • (2003) BMC Bioinformatics , vol.4 , pp. 13
    • O'Neill, M.C.1    Song, L.2
  • 60
    • 0242302280 scopus 로고    scopus 로고
    • Using ANOVA for Gene Selection From Microarray Studies of the Nervous System
    • Pavlidis P. 2003. Using ANOVA for Gene Selection From Microarray Studies of the Nervous System. Methods, 31(4), 282-9.
    • (2003) Methods , vol.31 , Issue.4 , pp. 282-289
    • Pavlidis, P.1
  • 61
    • 21444454257 scopus 로고    scopus 로고
    • False Discovery Rate, Sensitivity and Sample Size for Microarray Studies
    • Pawitan Y, Michiels S, Koscielny S, Gusnanto A and Ploner A. 2005. False Discovery Rate, Sensitivity and Sample Size for Microarray Studies. Bioinformatics, 21(13), 3017-3024.
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 62
    • 0036898577 scopus 로고    scopus 로고
    • Microarray Data Normalization and Transformation
    • Quackenbush J. 2002. Microarray Data Normalization and Transformation. Nat Genet, 32 Suppl, 496-501.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL. , pp. 496-501
    • Quackenbush, J.1
  • 63
    • 35649010459 scopus 로고    scopus 로고
    • Steady State Approach to Model Gene Regulatory Networks--Simulation of Microarray Experiments
    • Rawool SB and Venkatesh KV. 2007. Steady State Approach to Model Gene Regulatory Networks--Simulation of Microarray Experiments. Biosystems, 90(3), 636-655.
    • (2007) Biosystems , vol.90 , Issue.3 , pp. 636-655
    • Rawool, S.B.1    Venkatesh, K.V.2
  • 64
    • 34247388808 scopus 로고    scopus 로고
    • Integrating Functional Knowledge During Sample Clustering for Microarray Data Using Unsupervised Decision Trees
    • Redestig H, Repsilber D, Sohler F and Selbig J. 2007. Integrating Functional Knowledge During Sample Clustering for Microarray Data Using Unsupervised Decision Trees. Biom J, 49(2), 214-229.
    • (2007) Biom J , vol.49 , Issue.2 , pp. 214-229
    • Redestig, H.1    Repsilber, D.2    Sohler, F.3    Selbig, J.4
  • 65
    • 0037338017 scopus 로고    scopus 로고
    • Microarray-Based Cancer Diagnosis With Artificial Neural Networks
    • Ringner M and Peterson C. 2003. Microarray-Based Cancer Diagnosis With Artificial Neural Networks. Biotechniques, Suppl, 30-5.
    • (2003) Biotechniques , Issue.SUPPL. , pp. 30-35
    • Ringner, M.1    Peterson, C.2
  • 66
  • 67
    • 56949095848 scopus 로고    scopus 로고
    • A Fast Nearest Neighbor Classifier Based on Self-Organizing Incremental Neural Network
    • Shen F and Hasegawa O. 2008. A Fast Nearest Neighbor Classifier Based on Self-Organizing Incremental Neural Network. Neural Netw, 21(10), 1537-1547.
    • (2008) Neural Netw , vol.21 , Issue.10 , pp. 1537-1547
    • Shen, F.1    Hasegawa, O.2
  • 68
    • 22144487766 scopus 로고    scopus 로고
    • Using Optimized Evidence-Theoretic K-Nearest Neighbor Classifier and Pseudo-Amino Acid Composition to Predict Membrane Protein Types
    • Shen H and Chou KC. 2005. Using Optimized Evidence-Theoretic K-Nearest Neighbor Classifier and Pseudo-Amino Acid Composition to Predict Membrane Protein Types. Biochem Biophys Res Commun, 334(1), 288-292.
    • (2005) Biochem Biophys Res Commun , vol.334 , Issue.1 , pp. 288-292
    • Shen, H.1    Chou, K.C.2
  • 69
    • 33750415996 scopus 로고    scopus 로고
    • Eigengene-Based Linear Discriminant Model for Tumor Classification Using Gene Expression Microarray Data
    • Shen R, Ghosh D, Chinnaiyan A and Meng Z. 2006. Eigengene-Based Linear Discriminant Model for Tumor Classification Using Gene Expression Microarray Data. Bioinformatics, 22(21), 2635-2642.
    • (2006) Bioinformatics , vol.22 , Issue.21 , pp. 2635-2642
    • Shen, R.1    Ghosh, D.2    Chinnaiyan, A.3    Meng, Z.4
  • 70
    • 0037335024 scopus 로고    scopus 로고
    • Experimental Design of DNA Microarray Experiments
    • Simon RM, Dobbin K. 2003. Experimental Design of DNA Microarray Experiments. Biotechniques, Suppl, 16-21.
    • (2003) Biotechniques , Issue.SUPPL. , pp. 16-21
    • Simon, R.M.1    Dobbin, K.2
  • 71
    • 33745223877 scopus 로고    scopus 로고
    • K-Means Clustering: a Half-Century Synthesis
    • Steinley D. 2006. K-Means Clustering: a Half-Century Synthesis. Br J Math Stat Psychol, 59(Pt 1), 1-34.
    • (2006) Br J Math Stat Psychol , vol.59 , Issue.1 , pp. 1-34
    • Steinley, D.1
  • 74
    • 0346102887 scopus 로고    scopus 로고
    • Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data
    • Tsai CA, Hsueh HM and Chen JJ. 2003. Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data. Biometrics, 59(4), 1071-1081.
    • (2003) Biometrics , vol.59 , Issue.4 , pp. 1071-1081
    • Tsai, C.A.1    Hsueh, H.M.2    Chen, J.J.3
  • 75
    • 21244444543 scopus 로고    scopus 로고
    • Gene Selection for Microarray Data Analysis Using Principal Component Analysis
    • Wang A and Gehan EA. 2005. Gene Selection for Microarray Data Analysis Using Principal Component Analysis. Stat Med, 24(13), 2069-2087.
    • (2005) Stat Med , vol.24 , Issue.13 , pp. 2069-2087
    • Wang, A.1    Gehan, E.A.2
  • 76
    • 47249160807 scopus 로고    scopus 로고
    • Genetic Weighted K-Means Algorithm for Clustering Large-Scale Gene Expression Data
    • Wu FX. 2008. Genetic Weighted K-Means Algorithm for Clustering Large-Scale Gene Expression Data. BMC Bioinformatics, Suppl 6, S12.
    • (2008) BMC Bioinformatics , Issue.SUPPL. 6
    • Wu, F.X.1
  • 78
    • 44449178309 scopus 로고    scopus 로고
    • An Original Genetic Approach to the Fully Automatic Gridding of Microarray Images
    • Zacharia E and Maroulis D. 2008. An Original Genetic Approach to the Fully Automatic Gridding of Microarray Images. IEEE Trans Med Imaging, 27(6), 805-813.
    • (2008) IEEE Trans Med Imaging , vol.27 , Issue.6 , pp. 805-813
    • Zacharia, E.1    Maroulis, D.2
  • 79
    • 54349122465 scopus 로고    scopus 로고
    • Gene Expression Data Classification Using Consensus Independent Component Analysis
    • Zheng CH, Huang DS, Kong XZ and Zhao XM. 2008. Gene Expression Data Classification Using Consensus Independent Component Analysis. Genomics Proteomics Bioinformatics, 6(2), 74-82.
    • (2008) Genomics Proteomics Bioinformatics , vol.6 , Issue.2 , pp. 74-82
    • Zheng, C.H.1    Huang, D.S.2    Kong, X.Z.3    Zhao, X.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.