메뉴 건너뛰기




Volumn 6, Issue 2, 2008, Pages 74-82

Gene Expression Data Classification Using Consensus Independent Component Analysis

Author keywords

feature selection; gene expression data; independent component analysis; support vector machine

Indexed keywords

ACUTE LEUKEMIA; ARTICLE; COLON CANCER; DNA MICROARRAY; GENE EXPRESSION; GLIOMA; MATHEMATICAL MODEL; SUPPORT VECTOR MACHINE; TUMOR CLASSIFICATION;

EID: 54349122465     PISSN: 16720229     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1672-0229(08)60022-4     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A.A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 (2000) 503-511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 4
    • 0034601455 scopus 로고    scopus 로고
    • Molecular classification of cutaneous malignant melanoma by gene expression profiling
    • Bittner M., et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406 (2000) 536-540
    • (2000) Nature , vol.406 , pp. 536-540
    • Bittner, M.1
  • 5
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 6
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A., et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98 (2001) 13790-13795
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 7
    • 0036183546 scopus 로고    scopus 로고
    • Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions
    • Selaru F.M., et al. Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions. Gastroenterology 122 (2002) 606-613
    • (2002) Gastroenterology , vol.122 , pp. 606-613
    • Selaru, F.M.1
  • 8
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van't Veer L.J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (2002) 530-536
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1
  • 9
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer by using gene expression profiles
    • West M., et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA 98 (2001) 11462-11467
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 11462-11467
    • West, M.1
  • 10
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp M.A., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8 (2000) 68-74
    • (2000) Nat. Med. , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 11
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V., and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 12
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., et al. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1
  • 13
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumor using gene expression data
    • Dudoit S., et al. Comparison of discrimination methods for the classification of tumor using gene expression data. J. Am. Stat. Assoc. 97 (2002) 77-87
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1
  • 14
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O., et al. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97 (2000) 10101-10106
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10101-10106
    • Alter, O.1
  • 15
    • 0028416938 scopus 로고
    • Independent component analysis-a new concept?
    • Comon P. Independent component analysis-a new concept?. Signal Process. 36 (1994) 287-314
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 17
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10 (1999) 626-634
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 18
    • 84952149204 scopus 로고
    • A statistical view of some chemometric regression tools
    • Frank I.E., and Friedman J.H. A statistical view of some chemometric regression tools. Technometrics 35 (1993) 109-148
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 19
    • 4544320095 scopus 로고    scopus 로고
    • Feature selection in the independent component subspace for face recognition
    • Ekenel H.K., and Sankur B. Feature selection in the independent component subspace for face recognition. Pattern Recognit. Lett. 25 (2004) 1377-1388
    • (2004) Pattern Recognit. Lett. , vol.25 , pp. 1377-1388
    • Ekenel, H.K.1    Sankur, B.2
  • 20
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt C.L., et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63 (2003) 1602-1607
    • (2003) Cancer Res. , vol.63 , pp. 1602-1607
    • Nutt, C.L.1
  • 21
    • 34548624811 scopus 로고    scopus 로고
    • MISEP method for postnon-linear blind source separation
    • Zheng C.H., et al. MISEP method for postnon-linear blind source separation. Neural Comput. 19 (2007) 2557-2578
    • (2007) Neural Comput. , vol.19 , pp. 2557-2578
    • Zheng, C.H.1
  • 22
    • 32544440610 scopus 로고    scopus 로고
    • Nonnegative independent component analysis based on minimizing mutual information technique
    • Zheng C.H., et al. Nonnegative independent component analysis based on minimizing mutual information technique. Neurocomputing 69 (2006) 878-883
    • (2006) Neurocomputing , vol.69 , pp. 878-883
    • Zheng, C.H.1
  • 23
    • 0036856989 scopus 로고    scopus 로고
    • Face recognition by independent component analysis
    • Bartlett M.S., et al. Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13 (2002) 1450-1464
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1450-1464
    • Bartlett, M.S.1
  • 24
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • Lee T.W., et al. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 11 (1999) 417-441
    • (1999) Neural Comput. , vol.11 , pp. 417-441
    • Lee, T.W.1
  • 25
    • 54349103821 scopus 로고    scopus 로고
    • Hori, G., et al. 2001. Blind gene classification based on ICA of microarray data. In Proceedings of the Third International Conference on Independent Component Analysis and Blind Signal Separation, pp.332-336. San Diego, USA.
    • Hori, G., et al. 2001. Blind gene classification based on ICA of microarray data. In Proceedings of the Third International Conference on Independent Component Analysis and Blind Signal Separation, pp.332-336. San Diego, USA.
  • 26
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 (2002) 51-60
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 27
    • 12844264782 scopus 로고    scopus 로고
    • Blind source separation and the analysis of microarray data
    • Chiappetta P., et al. Blind source separation and the analysis of microarray data. J. Comput. Biol. 11 (2004) 1090-1109
    • (2004) J. Comput. Biol. , vol.11 , pp. 1090-1109
    • Chiappetta, P.1
  • 28
    • 12244298864 scopus 로고    scopus 로고
    • A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer
    • Martoglio A.M., et al. A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer. Bioinformatics 18 (2002) 1617-1624
    • (2002) Bioinformatics , vol.18 , pp. 1617-1624
    • Martoglio, A.M.1
  • 29
    • 85013515810 scopus 로고
    • Comparative study of techniques for large-scale feature selection
    • Elsevier Science Inc., New York, USA
    • Ferri F.J., et al. Comparative study of techniques for large-scale feature selection. Pattern Recognition in Practice IV (1994), Elsevier Science Inc., New York, USA 403-413
    • (1994) Pattern Recognition in Practice IV , pp. 403-413
    • Ferri, F.J.1
  • 34
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown M., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97 (2000) 262-267
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.1
  • 35
    • 7544244828 scopus 로고    scopus 로고
    • Advanced spatial data analysis and modelling with support vector machines
    • Kanevski M., et al. Advanced spatial data analysis and modelling with support vector machines. Int. J. Fuzzy Syst. 4 (2002) 606-615
    • (2002) Int. J. Fuzzy Syst. , vol.4 , pp. 606-615
    • Kanevski, M.1
  • 36
    • 0032594950 scopus 로고    scopus 로고
    • Support vector machines for spam categorization
    • Drucker H., et al. Support vector machines for spam categorization. IEEE Trans. Neural Netw. 10 (1999) 1048-1054
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1048-1054
    • Drucker, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.