메뉴 건너뛰기




Volumn 12, Issue 5, 2013, Pages 416-421

Fabrication of three-dimensional electrical connections by means of directed actin self-organization

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRIC CONDUCTIVITY; ELECTRIC CONNECTORS; GOLD COATINGS; MICROELECTRONICS; THREE DIMENSIONAL; THREE DIMENSIONAL COMPUTER GRAPHICS;

EID: 84876682432     PISSN: 14761122     EISSN: 14764660     Source Type: Journal    
DOI: 10.1038/nmat3569     Document Type: Article
Times cited : (61)

References (32)
  • 3
    • 61649087224 scopus 로고    scopus 로고
    • Is 3D chip technology the next growth engine for performance improvement?
    • Emma, P. G. & Kursun, E. Is 3D chip technology the next growth engine for performance improvement? IBM J. Res. Dev. 52, 541-552 (2008).
    • (2008) IBM J. Res. Dev. , vol.52 , pp. 541-552
    • Emma, P.G.1    Kursun, E.2
  • 4
    • 43149092706 scopus 로고    scopus 로고
    • Three-dimensional integration in microelectronics: Motivation, processing, and thermo mechanical modeling
    • Cale, T. S., Lu, J-Q. & Gutmann, R. J. Three-dimensional integration in microelectronics: Motivation, processing, and thermo mechanical modeling. Chem. Eng. Commun. 195, 847-888 (2008).
    • (2008) Chem. Eng. Commun. , vol.195 , pp. 847-888
    • Cale, T.S.1    Lu, J.-Q.2    Gutmann, R.J.3
  • 7
    • 0032490948 scopus 로고    scopus 로고
    • Design and self-assembly of two-dimensional DNA crystals
    • Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539-544 (1998).
    • (1998) Nature , vol.394 , pp. 539-544
    • Winfree, E.1    Liu, F.2    Wenzler, L.A.3    Seeman, N.C.4
  • 8
    • 33645028600 scopus 로고    scopus 로고
    • Folding DNA to create nanoscale shapes and patterns
    • Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 (2006).
    • (2006) Nature , vol.440 , pp. 297-302
    • Rothemund, P.W.K.1
  • 9
    • 66249137759 scopus 로고    scopus 로고
    • Self-assembly of DNA into nanoscale three-dimensional shapes
    • Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414-418 (2009).
    • (2009) Nature , vol.459 , pp. 414-418
    • Douglas, S.M.1
  • 10
    • 79954620578 scopus 로고    scopus 로고
    • DNA origami with complex curvatures in three-dimensional space
    • Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342-346 (2011).
    • (2011) Science , vol.332 , pp. 342-346
    • Han, D.1
  • 11
    • 40449119376 scopus 로고    scopus 로고
    • Directed three-dimensional patterning of self-assembled peptide fibrils
    • Dinca, V. et al. Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 8, 538-543 (2008).
    • (2008) Nano Lett. , vol.8 , pp. 538-543
    • Dinca, V.1
  • 12
    • 33244497383 scopus 로고    scopus 로고
    • Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications
    • Adler-Abramovich, L. et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications. Langmuir 22, 1313-1320 (2006).
    • (2006) Langmuir , vol.22 , pp. 1313-1320
    • Adler-Abramovich, L.1
  • 13
    • 23144466183 scopus 로고    scopus 로고
    • Programmable assembly of nanoarchitectures using genetically engineered viruses
    • Huang, Y. et al. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 5, 1429-1434 (2005).
    • (2005) Nano Lett. , vol.5 , pp. 1429-1434
    • Huang, Y.1
  • 14
    • 44649172609 scopus 로고    scopus 로고
    • Self-assembling peptide nanotubes
    • June-August
    • Scanlon, S. & Aggeli, A. Self-assembling peptide nanotubes. Nano Today 3, 22-30 (June-August, 2008).
    • (2008) Nano Today , vol.3 , pp. 22-30
    • Scanlon, S.1    Aggeli, A.2
  • 15
    • 0141765883 scopus 로고    scopus 로고
    • Fabrication of novel biomaterials through molecular self-assembly
    • Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171-1178 (2003).
    • (2003) Nature Biotechnol. , vol.21 , pp. 1171-1178
    • Zhang, S.1
  • 16
    • 84872602538 scopus 로고    scopus 로고
    • Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks
    • Portran, D., Gaillard, J., Vantard, M. & Thery, M. Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks. Cytoskeleton 70, 12-23 (2013).
    • (2013) Cytoskeleton , vol.70 , pp. 12-23
    • Portran, D.1    Gaillard, J.2    Vantard, M.3    Thery, M.4
  • 17
    • 77957155042 scopus 로고    scopus 로고
    • Nucleation geometry governs ordered actin networks structures
    • Reymann, A-C. et al. Nucleation geometry governs ordered actin networks structures. Nature Mater. 9, 827-832 (2010).
    • (2010) Nature Mater. , vol.9 , pp. 827-832
    • Reymann, A.-C.1
  • 18
    • 33845984335 scopus 로고    scopus 로고
    • Use of biomolecular templates for the fabrication of metal nanowires
    • Gazit, E. Use of biomolecular templates for the fabrication of metal nanowires. FEBS J. 274, 317-322 (2007).
    • (2007) FEBS J. , vol.274 , pp. 317-322
    • Gazit, E.1
  • 19
    • 5444224746 scopus 로고    scopus 로고
    • Actin-based metallic nanowires as bio-nanotransporters
    • Patolsky, F., Weizmann, Y. & Willner, I. Actin-based metallic nanowires as bio-nanotransporters. Nature Mater. 3, 692-695 (2004).
    • (2004) Nature Mater. , vol.3 , pp. 692-695
    • Patolsky, F.1    Weizmann, Y.2    Willner, I.3
  • 20
    • 52649143319 scopus 로고    scopus 로고
    • Microtubule-based gold nanowires and nanowire arrays
    • Zhou, J. C. et al. Microtubule-based gold nanowires and nanowire arrays. Small 4, 1507-1515 (2008).
    • (2008) Small , vol.4 , pp. 1507-1515
    • Zhou, J.C.1
  • 21
    • 0032546024 scopus 로고    scopus 로고
    • DNA-templated assembly and electrode attachment of a conducting silver wire
    • Braun, E., Eichen, Y., Sivan, U. &Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775-778 (1998).
    • (1998) Nature , vol.391 , pp. 775-778
    • Braun, E.1    Eichen, Y.2    Sivan, U.3    Ben-Yoseph, G.4
  • 22
    • 84865999793 scopus 로고    scopus 로고
    • DNA origami metallized site specifically to form electrically conductive nanowires
    • Pearson, A. C. et al. DNA origami metallized site specifically to form electrically conductive nanowires. J. Phys. Chem. B 116, 10551-10560 (2012).
    • (2012) J. Phys. Chem. B , vol.116 , pp. 10551-10560
    • Pearson, A.C.1
  • 23
    • 79960718426 scopus 로고    scopus 로고
    • Building distinct actin filament networks in a common cytoplasm
    • Michelot, A. & Drubin, D. G. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21, R560-R569 (2011).
    • (2011) Curr. Biol. , vol.21
    • Michelot, A.1    Drubin, D.G.2
  • 24
    • 0034720293 scopus 로고    scopus 로고
    • Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins
    • Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 171, 1007-1011 (2000).
    • (2000) Nature , vol.171 , pp. 1007-1011
    • Blanchoin, L.1
  • 25
    • 0033533789 scopus 로고    scopus 로고
    • Reconstitution of actin-based motility of Listeria and Shigella using pure proteins
    • Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613-616 (1999).
    • (1999) Nature , vol.401 , pp. 613-616
    • Loisel, T.P.1    Boujemaa, R.2    Pantaloni, D.3    Carlier, M.F.4
  • 26
    • 0033258036 scopus 로고    scopus 로고
    • Cooperative symmetry-breaking by actin polymerization in a model for cell motility
    • Oudenaarden, A. Van & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 493-499 (1999).
    • (1999) Nature Cell Biol. , pp. 493-499
    • Van, O.A.1    Theriot, J.A.2
  • 28
    • 77649187115 scopus 로고    scopus 로고
    • A 'primer'-based mechanism underlies branched actin filament network formation and motility
    • Achard, V. et al. A 'primer'-based mechanism underlies branched actin filament network formation and motility. Curr. Biol. 20, 423-428 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 423-428
    • Achard, V.1
  • 29
    • 84862867904 scopus 로고    scopus 로고
    • Reprogramming cell shape with laser nano-patterning
    • Vignaud, T. et al. Reprogramming cell shape with laser nano-patterning. J. Cell Sci. 125, 2134-2140 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 2134-2140
    • Vignaud, T.1
  • 30
    • 32244436956 scopus 로고    scopus 로고
    • Assembly of nanoparticle ring structures based on protein templates
    • Behrens, S., Habicht, W., Wagner, K. & Unger, E. Assembly of nanoparticle ring structures based on protein templates. Adv. Mater. 18, 284-289 (2006).
    • (2006) Adv. Mater. , vol.18 , pp. 284-289
    • Behrens, S.1    Habicht, W.2    Wagner, K.3    Unger, E.4
  • 31
    • 0344490335 scopus 로고    scopus 로고
    • Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition
    • Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527-4532 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 4527-4532
    • Scheibel, T.1
  • 32
    • 77955594608 scopus 로고    scopus 로고
    • Protein micropatterns: A direct printing protocol using deep UVs
    • Azioune, A., Carpi, N., Tseng, Q., Théry, M.& Piel, M.Protein micropatterns: A direct printing protocol using deep UVs. Methods Cell Biol. 97, 133-146 (2010).
    • (2010) Methods Cell Biol. , vol.97 , pp. 133-146
    • Azioune, A.1    Carpi, N.2    Tseng, Q.3    Théry, M.4    Piel, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.