-
2
-
-
45949087462
-
Place cells, grid cells, and the brain's spatial representation system
-
doi: 10.1146/annurev.neuro.31.061307.090723; pmid: 18284371
-
E. I. Moser, E. Kropff, M.-B. Moser, Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31, 69 (2008). doi: 10.1146/annurev.neuro.31.061307.090723; pmid: 18284371
-
(2008)
Annu. Rev. Neurosci.
, vol.31
, pp. 69
-
-
Moser, E.I.1
Kropff, E.2
Moser, M.-B.3
-
3
-
-
0015145985
-
The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat
-
doi: 10.1016/0006-8993(71)90358-1; pmid: 5124915
-
J. O'Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171 (1971). doi: 10.1016/0006-8993(71)90358-1; pmid: 5124915
-
(1971)
Brain Res.
, vol.34
, pp. 171
-
-
O'Keefe, J.1
Dostrovsky, J.2
-
4
-
-
77953738116
-
Development of the hippocampal cognitive map in preweanling rats
-
doi: 10.1126/science.1188224 pmid: 20558720
-
T. J. Wills, F. Cacucci, N. Burgess, J. O'Keefe, Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573 (2010). doi: 10.1126/science.1188224 pmid: 20558720
-
(2010)
Science
, vol.328
, pp. 1573
-
-
Wills, T.J.1
Cacucci, F.2
Burgess, N.3
O'Keefe, J.4
-
5
-
-
77953788831
-
Development of the spatial representation system in the rat
-
doi: 10.1126/science.1188210; pmid: 20558721
-
R. F. Langston et al., Development of the spatial representation system in the rat. Science 328, 1576 (2010). doi: 10.1126/science.1188210; pmid: 20558721
-
(2010)
Science
, vol.328
, pp. 1576
-
-
Langston, R.F.1
-
6
-
-
77957318946
-
Spatial representation along the proximodistal axis of CA1
-
doi: 10.1016/j.neuron.2010.08.042; pmid: 20920796
-
E. J. Henriksen et al., Spatial representation along the proximodistal axis of CA1. Neuron 68, 127 (2010). doi: 10.1016/j.neuron.2010.08.042; pmid: 20920796
-
(2010)
Neuron
, vol.68
, pp. 127
-
-
Henriksen, E.J.1
-
7
-
-
4344704086
-
Spatial representation in the entorhinal cortex
-
doi: 10.1126/science.1099901; pmid: 15333832
-
M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, M.-B. Moser, Spatial representation in the entorhinal cortex. Science 305, 1258 (2004). doi: 10.1126/science.1099901; pmid: 15333832
-
(2004)
Science
, vol.305
, pp. 1258
-
-
Fyhn, M.1
Molden, S.2
Witter, M.P.3
Moser, E.I.4
Moser, M.-B.5
-
8
-
-
23844454091
-
Microstructure of a spatial map in the entorhinal cortex
-
doi: 10.1038/nature03721; pmid: 15965463
-
T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, E. I. Moser, Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801 (2005). doi: 10.1038/nature03721; pmid: 15965463
-
(2005)
Nature
, vol.436
, pp. 801
-
-
Hafting, T.1
Fyhn, M.2
Molden, S.3
Moser, M.-B.4
Moser, E.I.5
-
9
-
-
34447535992
-
The head direction signal: Origins and sensory-motor integration
-
doi: 10.1146/annurev.neuro.29.051605.112854; pmid: 17341158
-
J. S. Taube, The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30, 181 (2007). doi: 10.1146/annurev.neuro.29. 051605.112854; pmid: 17341158
-
(2007)
Annu. Rev. Neurosci.
, vol.30
, pp. 181
-
-
Taube, J.S.1
-
10
-
-
33646457942
-
Conjunctive representation of position, direction, and velocity in entorhinal cortex
-
doi: 10.1126/science.1125572; pmid: 16675704
-
F. Sargolini et al., Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758 (2006). doi: 10.1126/science.1125572; pmid: 16675704
-
(2006)
Science
, vol.312
, pp. 758
-
-
Sargolini, F.1
-
11
-
-
77955051256
-
Grid cells in pre- and parasubiculum
-
doi: 10.1038/nn.2602; pmid: 20657591
-
C. N. Boccara et al., Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987 (2010). doi: 10.1038/nn.2602; pmid: 20657591
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 987
-
-
Boccara, C.N.1
-
12
-
-
57849155832
-
Representation of geometric borders in the entorhinal cortex
-
doi: 10.1126/science.1166466; pmid: 19095945
-
T. Solstad, C. N. Boccara, E. Kropff, M.-B. Moser, E. I. Moser, Representation of geometric borders in the entorhinal cortex. Science 322, 1865 (2008). doi: 10.1126/science.1166466; pmid: 19095945
-
(2008)
Science
, vol.322
, pp. 1865
-
-
Solstad, T.1
Boccara, C.N.2
Kropff, E.3
Moser, M.-B.4
Moser, E.I.5
-
13
-
-
57149087882
-
Influence of boundary removal on the spatial representations of the medial entorhinal cortex
-
doi: 10.1002/hipo.20511; pmid: 19021262
-
F. Savelli, D. Yoganarasimha, J. J. Knierim, Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 1270 (2008). doi: 10.1002/hipo.20511; pmid: 19021262
-
(2008)
Hippocampus
, vol.18
, pp. 1270
-
-
Savelli, F.1
Yoganarasimha, D.2
Knierim, J.J.3
-
14
-
-
84865084356
-
Neural representations of location composed of spatially periodic bands
-
doi: 10.1126/science.1222403; pmid: 22904012
-
J. Krupic, N. Burgess, J. O'Keefe, Neural representations of location composed of spatially periodic bands. Science 337, 853 (2012). doi: 10.1126/science.1222403; pmid: 22904012
-
(2012)
Science
, vol.337
, pp. 853
-
-
Krupic, J.1
Burgess, N.2
O'Keefe, J.3
-
15
-
-
33947142057
-
Hippocampal remapping and grid realignment in entorhinal cortex
-
doi: 10.1038/nature05601; pmid: 17322902
-
M. Fyhn, T. Hafting, A. Treves, M.-B. Moser, E. I. Moser, Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190 (2007). doi: 10.1038/nature05601; pmid: 17322902
-
(2007)
Nature
, vol.446
, pp. 190
-
-
Fyhn, M.1
Hafting, T.2
Treves, A.3
Moser, M.-B.4
Moser, E.I.5
-
16
-
-
0001066471
-
-
J. Paillard, Ed. Oxford Univ. Press, Oxford
-
R. U. Muller, J. L. Kubie, E. M. Bostock, J. S. Taube, G. J. Quirk, in Brain and Space, J. Paillard, Ed. (Oxford Univ. Press, Oxford, 1991), pp. 296-333.
-
(1991)
Brain and Space
, pp. 296-333
-
-
Muller, R.U.1
Kubie, J.L.2
Bostock, E.M.3
Taube, J.S.4
Quirk, G.J.5
-
17
-
-
33746311744
-
Path integration and the neural basis of the 'cognitive map'
-
doi: 10.1038/nrn1932; pmid: 16858394
-
B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, M.-B. Moser, Path integration and the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663 (2006). doi: 10.1038/nrn1932; pmid: 16858394
-
(2006)
Nat. Rev. Neurosci.
, vol.7
, pp. 663
-
-
McNaughton, B.L.1
Battaglia, F.P.2
Jensen, O.3
Moser, E.I.4
Moser, M.-B.5
-
18
-
-
0029999805
-
Geometric determinants of the place fields of hippocampal neurons
-
doi: 10.1038/381425a0; pmid: 8632799
-
J. O'Keefe, N. Burgess, Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425 (1996). doi: 10.1038/381425a0; pmid: 8632799
-
(1996)
Nature
, vol.381
, pp. 425
-
-
O'Keefe, J.1
Burgess, N.2
-
19
-
-
0033812123
-
Modeling place fields in terms of the cortical inputs to the hippocampus
-
doi: 10.1002/1098-1063(2000)10:4〈369::AID-HI
-
T. Hartley, N. Burgess, C. Lever, F. Cacucci, J. O'Keefe, Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369 (2000). doi: 10.1002/1098-1063(2000)10:4〈369::AID-HIPO3〉3.0.CO; 2-0; pmid: 10985276
-
(2000)
Hippocampus
, vol.10
, pp. 369
-
-
Hartley, T.1
Burgess, N.2
Lever, C.3
Cacucci, F.4
O'Keefe, J.5
-
20
-
-
33846074376
-
From grid cells to place cells: A mathematical model
-
doi: 10.1002/hipo.20244; pmid: 17094145
-
T. Solstad, E. I. Moser, G. T. Einevoll, From grid cells to place cells: a mathematical model. Hippocampus 16, 1026 (2006). doi: 10.1002/hipo.20244; pmid: 17094145
-
(2006)
Hippocampus
, vol.16
, pp. 1026
-
-
Solstad, T.1
Moser, E.I.2
Einevoll, G.T.3
-
21
-
-
33646438712
-
A spin glass model of path integration in rat medial entorhinal cortex
-
doi: 10.1523/JNEUROSCI.4353-05.2006; pmid: 16624947
-
M. C. Fuhs, D. S. Touretzky, A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266 (2006). doi: 10.1523/JNEUROSCI.4353-05.2006; pmid: 16624947
-
(2006)
J. Neurosci.
, vol.26
, pp. 4266
-
-
Fuhs, M.C.1
Touretzky, D.S.2
-
22
-
-
33845456327
-
Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning
-
doi: 10.1080/09548980601064846; pmid: 17162463
-
E. T. Rolls, S. M. Stringer, T. Elliot, Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network 17, 447 (2006). doi: 10.1080/09548980601064846; pmid: 17162463
-
(2006)
Network
, vol.17
, pp. 447
-
-
Rolls, E.T.1
Stringer, S.M.2
Elliot, T.3
-
23
-
-
77953525998
-
Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields
-
doi: 10.1152/jn.00932.2009; pmid: 20357069
-
F. Savelli, J. J. Knierim, Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. J. Neurophysiol. 103, 3167 (2010). doi: 10.1152/jn.00932.2009; pmid: 20357069
-
(2010)
J. Neurophysiol.
, vol.103
, pp. 3167
-
-
Savelli, F.1
Knierim, J.J.2
-
24
-
-
77954141740
-
Target-selective GABAergic control of entorhinal cortex output
-
doi: 10.1038/nn.2570; pmid: 20512133
-
C. Varga, S. Y. Lee, I. Soltesz, Target-selective GABAergic control of entorhinal cortex output. Nat. Neurosci. 13, 822 (2010). doi: 10.1038/nn.2570; pmid: 20512133
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 822
-
-
Varga, C.1
Lee, S.Y.2
Soltesz, I.3
-
25
-
-
0032566584
-
Impaired spatial learning after saturation of long-term potentiation
-
doi: 10.1126/science.281.5385.2038; pmid: 9748165
-
E. I. Moser, K. A. Krobert, M.-B. Moser, R. G. M. Morris, Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038 (1998). doi: 10.1126/science.281.5385.2038; pmid: 9748165
-
(1998)
Science
, vol.281
, pp. 2038
-
-
Moser, E.I.1
Krobert, K.A.2
Moser, M.-B.3
Morris, R.G.M.4
-
26
-
-
0036157394
-
Targeted retrograde gene delivery for neuronal protection
-
doi: 10.1006/mthe.2001.0520; pmid: 11786045
-
B. K. Kaspar et al., Targeted retrograde gene delivery for neuronal protection. Mol. Ther. 5, 50 (2002). doi: 10.1006/mthe.2001.0520; pmid: 11786045
-
(2002)
Mol. Ther.
, vol.5
, pp. 50
-
-
Kaspar, B.K.1
-
27
-
-
84876514511
-
-
note
-
AAV2 is a commonly used serotype for transgene delivery to restricted brain regions but its transport efficiency is limited (26, 64). We resolved this drawback by cross-packaging rAAV2 with viral capsids from other AAV serotypes to generate hybrid species such as rAAV2/1 (59, 64).
-
-
-
-
28
-
-
84876553796
-
-
note
-
EYFP was expressed under the control of a hybrid CAG promoter. Three tandem repeats of the nuclear localization signal (NLS) from the simian virus 40 large T antigen were added to the C terminus of EYFP to facilitate translocation of EYFP into the nucleus of infected neurons.
-
-
-
-
29
-
-
84942605875
-
-
G. Paxinos, Ed. Elsevier, Amsterdam, ed. 3
-
M. P. Witter, D. G. Amaral, in The Rat Nervous System, G. Paxinos, Ed. (Elsevier, Amsterdam, ed. 3, 2004), pp. 635-704.
-
(2004)
The Rat Nervous System
, pp. 635-704
-
-
Witter, M.P.1
Amaral, D.G.2
-
30
-
-
29044433616
-
Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses
-
doi: 10.1016/j.cub.2005.11.032; pmid: 16360690
-
G. Nagel et al., Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279 (2005). doi: 10.1016/j.cub.2005.11.032; pmid: 16360690
-
(2005)
Curr. Biol.
, vol.15
, pp. 2279
-
-
Nagel, G.1
-
31
-
-
65549100187
-
Characterization of engineered channelrhodopsin variants with improved properties and kinetics
-
doi: 10.1016/j.bpj.2008.11.034; pmid: 19254539
-
J. Y. Lin, M. Z. Lin, P. Steinbach, R. Y. Tsien, Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803 (2009). doi: 10.1016/j.bpj.2008.11.034; pmid: 19254539
-
(2009)
Biophys. J.
, vol.96
, pp. 1803
-
-
Lin, J.Y.1
Lin, M.Z.2
Steinbach, P.3
Tsien, R.Y.4
-
32
-
-
0345133280
-
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel
-
doi: 10.1073/pnas.1936192100; pmid: 14615590
-
G. Nagel et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U.S.A. 100, 13940 (2003). doi: 10.1073/pnas.1936192100; pmid: 14615590
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 13940
-
-
Nagel, G.1
-
33
-
-
26444621497
-
Millisecond-timescale, genetically targeted optical control of neural activity
-
doi: 10.1038/nn1525; pmid: 16116447
-
E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263 (2005). doi: 10.1038/nn1525; pmid: 16116447
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1263
-
-
Boyden, E.S.1
Zhang, F.2
Bamberg, E.3
Nagel, G.4
Deisseroth, K.5
-
34
-
-
84876569894
-
-
note
-
To increase rAAV packaging capacity and to avoid bleaching during in vivo photostimulation, EYFP was replaced with a nonfluorescent FLAG tag. FLAG was placed between a 20-amino acid trafficking signal and an ER-exporting motif, both derived from the inward-rectifier potassium ion channel Kir2.1 and introduced to improve membrane trafficking (35).
-
-
-
-
35
-
-
77950930288
-
Molecular and cellular approaches for diversifying and extending optogenetics
-
doi: 10.1016/j.cell.2010.02.037; pmid: 20303157
-
V. Gradinaru et al., Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154 (2010). doi: 10.1016/j.cell.2010.02. 037; pmid: 20303157
-
(2010)
Cell
, vol.141
, pp. 154
-
-
Gradinaru, V.1
-
36
-
-
34147126914
-
In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2
-
doi: 10.1016/j.neuron.2007.03.005; pmid: 17442243
-
B. R. Arenkiel et al., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205 (2007). doi: 10.1016/j.neuron.2007.03.005; pmid: 17442243
-
(2007)
Neuron
, vol.54
, pp. 205
-
-
Arenkiel, B.R.1
-
37
-
-
33646415071
-
The boundary vector cell model of place cell firing and spatial memory
-
doi: 10.1515/REVNEURO.2006.17.1-2.71; pmid: 16703944
-
C. Barry et al., The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci. 17, 71 (2006). doi: 10.1515/REVNEURO.2006.17.1-2. 71; pmid: 16703944
-
(2006)
Rev. Neurosci.
, vol.17
, pp. 71
-
-
Barry, C.1
-
38
-
-
68549123003
-
Boundary vector cells in the subiculum of the hippocampal formation
-
doi: 10.1523/JNEUROSCI.1319-09.2009; pmid: 19657030
-
C. Lever, S. Burton, A. Jeewajee, J. O' Keefe, N. Burgess, Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771 (2009). doi: 10.1523/JNEUROSCI.1319-09.2009; pmid: 19657030
-
(2009)
J. Neurosci.
, vol.29
, pp. 9771
-
-
Lever, C.1
Burton, S.2
Jeewajee, A.3
O'Keefe, J.4
Burgess, N.5
-
39
-
-
36049036839
-
Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex
-
doi: 10.1016/j.brainresrev.2007.05.002; pmid: 17559940
-
L. A. Cenquizca, L. W. Swanson, Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Brain Res. Rev. 56, 1 (2007). doi: 10.1016/j.brainresrev.2007.05.002; pmid: 17559940
-
(2007)
Brain Res. Brain Res. Rev.
, vol.56
, pp. 1
-
-
Cenquizca, L.A.1
Swanson, L.W.2
-
40
-
-
0034674953
-
Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro
-
doi: 10.1016/S0306-4522(00)00225-6; pmid: 11029534
-
A. Dhillon, R. S. Jones, Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99, 413 (2000). doi: 10.1016/S0306-4522(00)00225-6; pmid: 11029534
-
(2000)
Neuroscience
, vol.99
, pp. 413
-
-
Dhillon, A.1
Jones, R.S.2
-
41
-
-
84876513891
-
Recurrent inhibitory connectivity between entorhinal layer II stellate cells is sufficient to generate grid-cell patterns
-
10.1038/nn.3310 doi: 10.1038/nn.3310
-
J. J. Couey et al, Recurrent inhibitory connectivity between entorhinal layer II stellate cells is sufficient to generate grid-cell patterns. Nature Neurosci. 10.1038/nn.3310 (2013). doi: 10.1038/nn.3310
-
(2013)
Nature Neurosci.
-
-
Couey, J.J.1
-
42
-
-
0019460317
-
Electrophysiological characteristics of hippocampal complex-spike cells and theta cells
-
doi: 10.1007/BF00238898; pmid: 7215500
-
S. E. Fox, J. B. Ranck Jr., Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp. Brain Res. 41, 399 (1981). doi: 10.1007/BF00238898; pmid: 7215500
-
(1981)
Exp. Brain Res.
, vol.41
, pp. 399
-
-
Fox, S.E.1
Ranck Jr., J.B.2
-
43
-
-
0034786882
-
A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex
-
pmid: 11600659
-
L. M. Frank, E. N. Brown, M. A. Wilson, A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J. Neurophysiol. 86, 2029 (2001). pmid: 11600659
-
(2001)
J. Neurophysiol.
, vol.86
, pp. 2029
-
-
Frank, L.M.1
Brown, E.N.2
Wilson, M.A.3
-
44
-
-
0024362118
-
GABAergic neurons in the entorhinal cortex project to the hippocampus
-
doi: 10.1016/0006-8993(89)90162-5; pmid: 2765919
-
P. Germroth, W. K. Schwerdtfeger, E. H. Buhl, GABAergic neurons in the entorhinal cortex project to the hippocampus. Brain Res. 494, 187 (1989). doi: 10.1016/0006-8993(89)90162-5; pmid: 2765919
-
(1989)
Brain Res.
, vol.494
, pp. 187
-
-
Germroth, P.1
Schwerdtfeger, W.K.2
Buhl, E.H.3
-
45
-
-
84858776348
-
Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex
-
doi: 10.1126/science.1217139; pmid: 22442486
-
S. Melzer et al., Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335, 1506 (2012). doi: 10.1126/science.1217139; pmid: 22442486
-
(2012)
Science
, vol.335
, pp. 1506
-
-
Melzer, S.1
-
46
-
-
67650255311
-
PINP: A new method of tagging neuronal populations for identification during in vivo electrophysiological recording
-
doi: 10.1371/journal.pone.0006099; pmid: 19584920
-
S. Q. Lima, T. Hromádka, P. Znamenskiy, A. M. Zador, PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009). doi: 10.1371/journal.pone.0006099; pmid: 19584920
-
(2009)
PLoS ONE
, vol.4
-
-
Lima, S.Q.1
Hromádka, T.2
Znamenskiy, P.3
Zador, A.M.4
-
47
-
-
79952814389
-
Amygdala circuitry mediating reversible and bidirectional control of anxiety
-
doi: 10.1038/nature09820; pmid: 21389985
-
K. M. Tye et al., Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358 (2011). doi: 10.1038/nature09820; pmid: 21389985
-
(2011)
Nature
, vol.471
, pp. 358
-
-
Tye, K.M.1
-
48
-
-
0017126949
-
Place units in the hippocampus of the freely moving rat
-
doi: 10.1016/0014-4886(76)90055-8; pmid: 1261644
-
J. O 'Keefe, Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78 (1976). doi: 10.1016/0014-4886(76)90055-8; pmid: 1261644
-
(1976)
Exp. Neurol.
, vol.51
, pp. 78
-
-
'Keefe, J.O.1
-
49
-
-
0029805375
-
Dynamics of mismatch correction in the hippocampal ensemble code for space: Interaction between path integration and environmental cues
-
pmid: 8987829
-
K. M. Gothard, W. E. Skaggs, B. L. McNaughton, Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16, 8027 (1996).pmid: 8987829
-
(1996)
J. Neurosci.
, vol.16
, pp. 8027
-
-
Gothard, K.M.1
Skaggs, W.E.2
McNaughton, B.L.3
-
50
-
-
24344469657
-
Self-motion and the hippocampal spatial metric
-
doi: 10.1523/JNEUROSCI.0693-05.2005; pmid: 16135766
-
A. Terrazas et al., Self-motion and the hippocampal spatial metric. J. Neurosci. 25, 8085 (2005). doi: 10.1523/JNEUROSCI.0693-05.2005; pmid: 16135766
-
(2005)
J. Neurosci.
, vol.25
, pp. 8085
-
-
Terrazas, A.1
-
51
-
-
3142749730
-
Representation of objects in space by two classes of hippocampal pyramidal cells
-
doi: 10.1085/jgp.200409015; pmid: 15197223
-
B. Rivard, Y. Li, P. P. Lenck-Santini, B. Poucet, R. U. Muller, Representation of objects in space by two classes of hippocampal pyramidal cells. J. Gen. Physiol. 124, 9 (2004). doi: 10.1085/jgp.200409015; pmid: 15197223
-
(2004)
J. Gen. Physiol.
, vol.124
, pp. 9
-
-
Rivard, B.1
Li, Y.2
Lenck-Santini, P.P.3
Poucet, B.4
Muller, R.U.5
-
52
-
-
82855161386
-
Models of place and grid cell firing and theta rhythmicity
-
doi: 10.1016/j.conb.2011.07.002 pmid: 21820895
-
N. Burgess, J. O'Keefe, Models of place and grid cell firing and theta rhythmicity. Curr. Opin. Neurobiol. 21, 734 (2011). doi: 10.1016/j.conb.2011.07. 002 pmid: 21820895
-
(2011)
Curr. Opin. Neurobiol.
, vol.21
, pp. 734
-
-
Burgess, N.1
O'Keefe, J.2
-
53
-
-
79955527088
-
The spatial periodicity of grid cells is not sustained during reduced theta oscillations
-
doi: 10.1126/science.1201685; pmid: 21527713
-
J. Koenig, A. N. Linder, J. K. Leutgeb, S. Leutgeb, The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592 (2011). doi: 10.1126/science.1201685; pmid: 21527713
-
(2011)
Science
, vol.332
, pp. 592
-
-
Koenig, J.1
Linder, A.N.2
Leutgeb, J.K.3
Leutgeb, S.4
-
54
-
-
84865089043
-
Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior
-
doi: 10.1126/science.1221489; pmid: 22904011
-
D. Lee, B. J. Lin, A. K. Lee, Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849 (2012). doi: 10.1126/science.1221489; pmid: 22904011
-
(2012)
Science
, vol.337
, pp. 849
-
-
Lee, D.1
Lin, B.J.2
Lee, A.K.3
-
55
-
-
67049167153
-
The input-output transformation of the hippocampal granule cells: From grid cells to place fields
-
doi: 10.1523/JNEUROSCI.6048-08.2009; pmid: 19515918
-
L. de Almeida, M. Idiart, J. E. Lisman, The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29, 7504 (2009). doi: 10.1523/JNEUROSCI.6048-08.2009; pmid: 19515918
-
(2009)
J. Neurosci.
, vol.29
, pp. 7504
-
-
De Almeida, L.1
Idiart, M.2
Lisman, J.E.3
-
56
-
-
79959641239
-
Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping
-
doi: 10.1523/JNEUROSCI.1433-11.2011; pmid: 21697391
-
J. D. Monaco, L. F. Abbott, Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. J. Neurosci. 31, 9414 (2011). doi: 10.1523/JNEUROSCI.1433-11.2011; pmid: 21697391
-
(2011)
J. Neurosci.
, vol.31
, pp. 9414
-
-
Monaco, J.D.1
Abbott, L.F.2
-
57
-
-
77951810851
-
Dendritic organization of sensory input to cortical neurons in vivo
-
doi: 10.1038/nature08947; pmid: 20428163
-
H. Jia, N. L. Rochefort, X. Chen, A. Konnerth, Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307 (2010). doi: 10.1038/nature08947; pmid: 20428163
-
(2010)
Nature
, vol.464
, pp. 1307
-
-
Jia, H.1
Rochefort, N.L.2
Chen, X.3
Konnerth, A.4
-
58
-
-
67349133131
-
Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors
-
doi: 10.1016/j.neuroscience.2009.03.032; pmid: 19318117
-
J. L. Nathanson, Y. Yanagawa, K. Obata, E. M. Callaway, Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161, 441 (2009). doi: 10.1016/j.neuroscience.2009.03.032; pmid: 19318117
-
(2009)
Neuroscience
, vol.161
, pp. 441
-
-
Nathanson, J.L.1
Yanagawa, Y.2
Obata, K.3
Callaway, E.M.4
-
59
-
-
33846847943
-
Decoding NMDA receptor signaling: Identification of genomic programs specifying neuronal survival and death
-
doi: 10.1016/j.neuron.2007.01.025; pmid: 17296556
-
S. J. Zhang et al., Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549 (2007). doi: 10.1016/j.neuron.2007.01.025; pmid: 17296556
-
(2007)
Neuron
, vol.53
, pp. 549
-
-
Zhang, S.J.1
-
60
-
-
80051671761
-
Schema-dependent gene activation and memory encoding in neocortex
-
doi: 10.1126/science.1205274; pmid: 21737703
-
D. Tse et al., Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891 (2011). doi: 10.1126/science.1205274; pmid: 21737703
-
(2011)
Science
, vol.333
, pp. 891
-
-
Tse, D.1
-
61
-
-
0001270473
-
-
S.J. Hanson, J.D. Cowan, C.L. Giles, Eds. Morgan Kaufmann, San Mateo, CA
-
W. E. Skaggs, B. L. McNaughton, K. M. Gothard, E. J. Markus, in Advances in Neural Processing Systems, vol. 5. S.J. Hanson, J.D. Cowan, C.L. Giles, Eds. (Morgan Kaufmann, San Mateo, CA, 1993), pp. 1030-1037.
-
(1993)
Advances in Neural Processing Systems
, vol.5
, pp. 1030-1037
-
-
Skaggs, W.E.1
McNaughton, B.L.2
Gothard, K.M.3
Markus, E.J.4
-
62
-
-
0030036111
-
Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences
-
doi: 10.1002/(SICI)1098-1063(1996)6:2〈149::AI
-
W. E. Skaggs, B. L. McNaughton, M. A. Wilson, C. A. Barnes, Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149 (1996). doi: 10.1002/(SICI)1098-1063(1996)6: 2〈149::AID-HIPO6〉3.0.CO;2-K; pmid: 8797016
-
(1996)
Hippocampus
, vol.6
, pp. 149
-
-
Skaggs, W.E.1
McNaughton, B.L.2
Wilson, M.A.3
Barnes, C.A.4
-
63
-
-
0023878474
-
Reciprocal connections of the insular and piriform claustrum with limbic cortex: An anatomical study in the cat
-
doi: 10.1016/0306-4522(88)90347-8; pmid: 3362351
-
M. P. Witter, P. Room, H. J. Groenewegen, A. H. Lohman, Reciprocal connections of the insular and piriform claustrum with limbic cortex: an anatomical study in the cat. Neuroscience 24, 519 (1988). doi: 10.1016/0306-4522(88)90347-8; pmid: 3362351
-
(1988)
Neuroscience
, vol.24
, pp. 519
-
-
Witter, M.P.1
Room, P.2
Groenewegen, H.J.3
Lohman, A.H.4
-
64
-
-
4344566457
-
Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system
-
Burger et al., Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302 (2004).
-
(2004)
Mol. Ther.
, vol.10
, pp. 302
-
-
Burger1
|