메뉴 건너뛰기




Volumn 28, Issue 5, 2013, Pages 359-371

Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling

Author keywords

[No Author keywords available]

Indexed keywords

ANN PREDICTION; ENSEMBLE TECHNIQUES; INPUT DELAYS; INPUT SELECTION; PREDICTION ACCURACY; STATE-SPACE MODELS; TOLL COLLECTION SYSTEMS; TRAVEL TIME PREDICTION;

EID: 84876407045     PISSN: 10939687     EISSN: 14678667     Source Type: Journal    
DOI: 10.1111/mice.12000     Document Type: Article
Times cited : (87)

References (46)
  • 4
    • 0141454753 scopus 로고    scopus 로고
    • Neuro-fuzzy logic model for freeway work zone capacity estimation
    • Adeli, H. & Jiang, X. (2003), Neuro-fuzzy logic model for freeway work zone capacity estimation, Journal of Transportation Engineering, 129(5), 484-94.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.5 , pp. 484-494
    • Adeli, H.1    Jiang, X.2
  • 5
    • 33645530462 scopus 로고    scopus 로고
    • Dynamic fuzzy wavelet neural network model for structural system identification
    • Adeli, H. & Jiang, X. (2006), Dynamic fuzzy wavelet neural network model for structural system identification, Journal of Structural Engineering, 132(1), 102-11.
    • (2006) Journal of Structural Engineering , vol.132 , Issue.1 , pp. 102-111
    • Adeli, H.1    Jiang, X.2
  • 6
    • 79958760673 scopus 로고    scopus 로고
    • Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks
    • Bhaskar, A., Chung, E. & Dumont, A.-G. (2011), Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks, Computer-Aided Civil and Infrastructure Engineering, 26(6), 433-50.
    • (2011) Computer-Aided Civil and Infrastructure Engineering , vol.26 , Issue.6 , pp. 433-450
    • Bhaskar, A.1    Chung, E.2    Dumont, A.-G.3
  • 8
    • 0033349045 scopus 로고    scopus 로고
    • Travel-time prediction for freeway corridors. Transportation Research Record No. 1676, Transportation Research Board of the National Academies, Washington DC
    • D'Angelo, M. P., Al-Deek, H. M. & Wang, M. C. (1999), Travel-time prediction for freeway corridors. Transportation Research Record No. 1676, Transportation Research Board of the National Academies, Washington DC, pp. 184-91.
    • (1999) , pp. 184-191
    • D'Angelo, M.P.1    Al-Deek, H.M.2    Wang, M.C.3
  • 9
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • Dharia, A. & Adeli, H. (2003), Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 16(7-8), 607-13.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 11
    • 0027787102 scopus 로고
    • The use of neural networks to recognize and predict traffic congestion
    • Dougherty, M. S., Kirby, H. R. & Boyle, R. D. (1993), The use of neural networks to recognize and predict traffic congestion, Traffic Engineering and Control, 34(6), 311-14.
    • (1993) Traffic Engineering and Control , vol.34 , Issue.6 , pp. 311-314
    • Dougherty, M.S.1    Kirby, H.R.2    Boyle, R.D.3
  • 14
    • 84876416348 scopus 로고
    • Applications of artificial neural networks to intelligent vehicle-highway systems. Transportation Research Record No. 1453, Transportation Research Board of the National Academies, Washington DC.
    • Hua, J. & Faghri, A. (1994), Applications of artificial neural networks to intelligent vehicle-highway systems. Transportation Research Record No. 1453, Transportation Research Board of the National Academies, Washington DC, pp. 83-90.
    • (1994) , pp. 83-90
    • Hua, J.1    Faghri, A.2
  • 15
    • 84876420541 scopus 로고    scopus 로고
    • Inter-urban short-term traffic congestion prediction. Ph.D. dissertation, University of Twente, Oldenzaal, the Netherlands
    • Huisken, G. (2006), Inter-urban short-term traffic congestion prediction. Ph.D. dissertation, University of Twente, Oldenzaal, the Netherlands.
    • (2006)
    • Huisken, G.1
  • 16
    • 1642336343 scopus 로고    scopus 로고
    • Optimization of dynamic neural network performance for short-term traffic prediction. Transportation Research Record No. 1836, Transportation Research Board of the National Academies, Washington DC.
    • Ishak, S., Kotha, P. & Alecsandru, C. (2003), Optimization of dynamic neural network performance for short-term traffic prediction. Transportation Research Record No. 1836, Transportation Research Board of the National Academies, Washington DC, pp. 45-56.
    • (2003) , pp. 45-56
    • Ishak, S.1    Kotha, P.2    Alecsandru, C.3
  • 17
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Engineering, 131(10), 771-80.
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-780
    • Jiang, X.1    Adeli, H.2
  • 18
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis, M. G. & Vlahogianni, E. I. (2011), Statistical methods versus neural networks in transportation research: differences, similarities and some insights, Transportation Research Part C: Emerging Technologies, 19(3), 387-99.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 19
    • 33846546622 scopus 로고    scopus 로고
    • Predicting urban arterial travel time with state-space neural networks and Kalman filters. Transportation Research Record No. 1968, Transportation Research Board of the National Academies, Washington DC.
    • Liu, H., Zuylen, H. v., Lint, H. v. & Salomons, M. (2006), Predicting urban arterial travel time with state-space neural networks and Kalman filters. Transportation Research Record No. 1968, Transportation Research Board of the National Academies, Washington DC, pp. 99-108.
    • (2006) , pp. 99-108
    • Liu, H.1    Zuylen, H.2    Lint, H.3    Salomons, M.4
  • 20
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions: a review of practical bayesian methods for supervised neural networks
    • Mackay, D. J. C. (1995), Probable networks and plausible predictions: a review of practical bayesian methods for supervised neural networks, Network Computation in Neural System 6(3), 469-505.
    • (1995) Network Computation in Neural System , vol.6 , Issue.3 , pp. 469-505
    • Mackay, D.J.C.1
  • 22
    • 14744293223 scopus 로고    scopus 로고
    • Learning systems for predicting experiential travel times in the presence of incidents: insights and lessons learned. Transportation Research Record No. 1879, Transportation Research Board of the National Academies, Washington DC.
    • Mark, C. D. & Sadek, A. W. (2004), Learning systems for predicting experiential travel times in the presence of incidents: insights and lessons learned. Transportation Research Record No. 1879, Transportation Research Board of the National Academies, Washington DC, pp. 51-58.
    • (2004) , pp. 51-58
    • Mark, C.D.1    Sadek, A.W.2
  • 23
    • 77949371485 scopus 로고    scopus 로고
    • Data-based non-parametric regression for predicting travel times in urban traffic networks
    • Markovic, H., Basic, B. D., Gold, H., Dong, F. & Hirota, K. (2010), Data-based non-parametric regression for predicting travel times in urban traffic networks, Promet Traffic-Traffico, 22(1), 1-13.
    • (2010) Promet Traffic-Traffico , vol.22 , Issue.1 , pp. 1-13
    • Markovic, H.1    Basic, B.D.2    Gold, H.3    Dong, F.4    Hirota, K.5
  • 24
    • 84876419695 scopus 로고    scopus 로고
    • Statistical confidence estimation measures for artificial neural networks: application in bus travel time prediction
    • (DVD).
    • Mazloumi, E., Currie, G., Rose, G. & Sarvi, M (2010). Statistical confidence estimation measures for artificial neural networks: application in bus travel time prediction, in TRB 89th Annual Meeting Compendium of Papers (DVD).
    • (2010) TRB 89th Annual Meeting Compendium of Papers
    • Mazloumi, E.1    Currie, G.2    Rose, G.3    Sarvi, M.4
  • 26
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • Min, W. & Wynter, L. (2011), Real-time road traffic prediction with spatio-temporal correlations, Transportation Research Part C: Emerging Technologies, 19(4), 606-16.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.4 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 27
    • 84864362117 scopus 로고    scopus 로고
    • Span: spike pattern association neuron for learning spatio-temporal spike patterns
    • DOI: 10.1142/S0129065712500128.
    • Mohemmed, A., Schliebs, S., Matsuda, S. & Kasabov, N. (2012), Span: spike pattern association neuron for learning spatio-temporal spike patterns, International Journal of Neural Systems, 22(4), DOI: 10.1142/S0129065712500128.
    • (2012) International Journal of Neural Systems , vol.22 , Issue.4
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Kasabov, N.4
  • 29
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Transportation Research Board of the National Academies, Washington DC.
    • Park, D. & Rilett, L. R. (1998), Forecasting multiple-period freeway link travel times using modular neural networks. Transportation Research Record No. 1617, Transportation Research Board of the National Academies, Washington DC, pp. 163-70.
    • (1998) Transportation Research Record No. 1617 , pp. 163-170
    • Park, D.1    Rilett, L.R.2
  • 30
  • 31
    • 58549108393 scopus 로고    scopus 로고
    • Identifying optimal data aggregation interval sizes for link and corridor travel time estimation and forecasting
    • Park, D., Rilett, L. R., Gajewski, B. J., Spiegelman, C. H. & Choi, C. (2009), Identifying optimal data aggregation interval sizes for link and corridor travel time estimation and forecasting, Transportation, 36(1), 77-95.
    • (2009) Transportation , vol.36 , Issue.1 , pp. 77-95
    • Park, D.1    Rilett, L.R.2    Gajewski, B.J.3    Spiegelman, C.H.4    Choi, C.5
  • 32
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • Park, D., Rilett, L. R. & Han, G. (1999), Spectral basis neural networks for real-time travel time forecasting, Journal of Transportation Engineering, 125(6), 515-23.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.R.2    Han, G.3
  • 33
    • 85173137684 scopus 로고    scopus 로고
    • Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transportation Research Record No. 2039, Transportation Research Board of the National Academies, Washington DC.
    • Ruiz Juri, N., Unnikrishnan, A. & Waller, S. T. (2007), Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transportation Research Record No. 2039, Transportation Research Board of the National Academies, Washington DC, pp. 24-31.
    • (2007) , pp. 24-31
    • Ruiz Juri, N.1    Unnikrishnan, A.2    Waller, S.T.3
  • 34
    • 0035400597 scopus 로고    scopus 로고
    • Enhancing neural network traffic incident-detection algorithms using wavelet
    • Samant, A. & Adeli, H. (2001), Enhancing neural network traffic incident-detection algorithms using wavelet, Computer-Aided Civil and Infrastructure Engineering, 16(4), 239-45.
    • (2001) Computer-Aided Civil and Infrastructure Engineering , vol.16 , Issue.4 , pp. 239-245
    • Samant, A.1    Adeli, H.2
  • 38
    • 57949084250 scopus 로고    scopus 로고
    • Improved flow-based travel time estimation method from point detector data for freeways
    • Vanajakshi, L. D., Williams, B. M. & Rilett, L. R. (2009), Improved flow-based travel time estimation method from point detector data for freeways, Journal of Transportation Engineering, 135(1), 26-36.
    • (2009) Journal of Transportation Engineering , vol.135 , Issue.1 , pp. 26-36
    • Vanajakshi, L.D.1    Williams, B.M.2    Rilett, L.R.3
  • 39
    • 76649114971 scopus 로고    scopus 로고
    • Bayesian training and committees of state space neural networks for online travel time prediction. Transportation Research Record No. 2105, Transportation Research Board of the National Academies, Washington DC.
    • van Hinsbergen, D. J. J., van Lint, J. W. C. & van Zuylen, H. J. (2009), Bayesian training and committees of state space neural networks for online travel time prediction. Transportation Research Record No. 2105, Transportation Research Board of the National Academies, Washington DC, pp. 118-26.
    • (2009) , pp. 118-126
    • van Hinsbergen, D.J.J.1    van Lint, J.W.C.2    van Zuylen, H.J.3
  • 40
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • Van Lint, J. W. C. (2006), Reliable real-time framework for short-term freeway travel time prediction, Journal of Transportation Engineering, 132(12), 921-32.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.12 , pp. 921-932
    • Van Lint, J.W.C.1
  • 41
    • 85173181008 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record No. 1811, Transportation Research Board of the National Academies, Washington DC.
    • Van Lint, J. W. C., Hoogendoorn, S. P. & Van Zuylen, H. J. (2002), Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record No. 1811, Transportation Research Board of the National Academies, Washington DC, pp. 30-9.
    • (2002) , pp. 30-39
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 43
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni, E. I., Golias, J. C. & Karlaftis, M. G. (2004), Short-term traffic forecasting: overview of objectives and methods, Transport Reviews, 24(5), 533-57.
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 44
    • 36749098985 scopus 로고    scopus 로고
    • Development of freeway travel time forecasting models by integrating different sources of traffic data
    • Wei, C.-H. & Lee, Y. (2007), Development of freeway travel time forecasting models by integrating different sources of traffic data, IEEE Transactions on Vehicular Technology, 56(6), 3682-94.
    • (2007) IEEE Transactions on Vehicular Technology , vol.56 , Issue.6 , pp. 3682-3694
    • Wei, C.-H.1    Lee, Y.2
  • 45
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Transportation Research Record No. 1776, Transportation Research Board of the National Academies, Washington DC.
    • Williams, B. M. (2001), Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Transportation Research Record No. 1776, Transportation Research Board of the National Academies, Washington DC, pp. 194-200.
    • (2001) , pp. 194-200
    • Williams, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.