메뉴 건너뛰기




Volumn , Issue 1968, 2006, Pages 99-108

Predicting urban arterial travel time with state-space neural networks and Kalman filters

Author keywords

[No Author keywords available]

Indexed keywords

CONFORMAL MAPPING; DATA REDUCTION; MATHEMATICAL MODELS; NEURAL NETWORKS; STATE SPACE METHODS; URBAN PLANNING;

EID: 33846546622     PISSN: 03611981     EISSN: None     Source Type: Journal    
DOI: 10.3141/1968-12     Document Type: Conference Paper
Times cited : (92)

References (22)
  • 2
    • 33846525528 scopus 로고    scopus 로고
    • Modeling Urban Link Travel Time Using Data from Inductive Loop Detectors
    • Presented at, Istanbul, Turkey
    • Robinson, S. J. P. Modeling Urban Link Travel Time Using Data from Inductive Loop Detectors. Presented at 10th World Conference on Transport Research, Istanbul, Turkey, 2004.
    • (2004) 10th World Conference on Transport Research
    • Robinson, S.J.P.1
  • 6
    • 0345375534 scopus 로고    scopus 로고
    • Dynamic Travel Time Prediction with Real-Time and Historic Data
    • Chien, S. I.-J., and C. M. Kuchipudi. Dynamic Travel Time Prediction with Real-Time and Historic Data. Journal of Transportation Engineering. Vol. 129, No. 6, 2003, pp. 608-616.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 608-616
    • Chien, S.I.-J.1    Kuchipudi, C.M.2
  • 8
    • 0029485810 scopus 로고
    • Review of Neural Networks Applied to Transport
    • Dougherty, M. A Review of Neural Networks Applied to Transport. Transportation Research, Part C, Vol. 3, No. 4, 1995, pp. 247-260.
    • (1995) Transportation Research, Part C , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.A.1
  • 9
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks
    • TRB. National Research Council, Washington. D.C
    • Park, D., and L. R. Rilett. Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks. In Transportation Research Record 1617, TRB. National Research Council, Washington. D.C., 1998, pp. 163-170.
    • (1998) Transportation Research Record 1617 , pp. 163-170
    • Park, D.1    Rilett, L.R.2
  • 10
    • 0032779078 scopus 로고    scopus 로고
    • Spectral Basis Neural Networks for Real-Time Travel Time Forecasting
    • Park, D., L. R. Rilett, and G. Han. Spectral Basis Neural Networks for Real-Time Travel Time Forecasting. Journal of Transportation Engineering. Vol. 125, No. 6, 1999, pp. 515-523.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.R.2    Han, G.3
  • 11
    • 77952651573 scopus 로고    scopus 로고
    • Application of Fuzzy Logic and Neural Networks for Dynamic Travel Time Estimation
    • Palacharla, P. V., and P. C. Nelson. Application of Fuzzy Logic and Neural Networks for Dynamic Travel Time Estimation. International Transactions in Operational Research, Vol. 6, 1999, pp. 145-160.
    • (1999) International Transactions in Operational Research , vol.6 , pp. 145-160
    • Palacharla, P.V.1    Nelson, P.C.2
  • 13
    • 3242676259 scopus 로고    scopus 로고
    • Optimizing Traffic Prediction Performance of Neural Networks Under Various Topological, Input, and Traffic Condition Settings
    • Ishak, S., and C. Alecsandru. Optimizing Traffic Prediction Performance of Neural Networks Under Various Topological, Input, and Traffic Condition Settings. Journal of Transportation Engineering, Vol. 130, No. 4, 2004, pp. 452-464.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.4 , pp. 452-464
    • Ishak, S.1    Alecsandru, C.2
  • 14
    • 0347526141 scopus 로고    scopus 로고
    • Neural Network Model for Rapid Forecasting of Freeway Link Travel Time
    • Dharia, A., and H. Adeli. Neural Network Model for Rapid Forecasting of Freeway Link Travel Time. Engineering Applications of Artificial Intelligence, Vol. 16, 2003, pp. 607-613.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 15
    • 11144262651 scopus 로고    scopus 로고
    • Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A General Approach
    • Wang, Y., and M. Papageorgiou. Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A General Approach. Transportation Research, Part B, Vol. 39, No. 2, 2005, pp. 141-167.
    • (2005) Transportation Research, Part B , vol.39 , Issue.2 , pp. 141-167
    • Wang, Y.1    Papageorgiou, M.2
  • 17
    • 0000221272 scopus 로고
    • Training Multilayer Perceptions with the Extended Kaiman Filter
    • Morgan Kauffman, San Mateo, Calif
    • Singhal, S., and L. Wu. Training Multilayer Perceptions with the Extended Kaiman Filter. In Advances in Neural Information Processing Systemy I. Morgan Kauffman, San Mateo, Calif., 1989, pp. 133-140.
    • (1989) Advances in Neural Information Processing Systemy I , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 18
    • 0038764011 scopus 로고    scopus 로고
    • Kalman Filters Improve LSTM Network Performance in Problems Unsolvable by Traditional Recurrent Nets
    • Pérez-Ortiz, J. A., F. A. Gers, D. Eck, and J. Schmidhuber. Kalman Filters Improve LSTM Network Performance in Problems Unsolvable by Traditional Recurrent Nets. Neural Networks. Vol. 16. No. 2, 2003, pp. 241-250.
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 241-250
    • Pérez-Ortiz, J.A.1    Gers, F.A.2    Eck, D.3    Schmidhuber, J.4
  • 19
    • 26444565569 scopus 로고
    • Finding Structure in Time
    • Elman, J. Finding Structure in Time. Cognitive Science, Vol. 14, 1990, pp. 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.