메뉴 건너뛰기




Volumn 21, Issue 1, 2010, Pages 136-157

eFSM - A novel online neural-fuzzy semantic memory model

Author keywords

Evolving fuzzy system; Incremental sequential learning; Neural fuzzy semantic memory; Neural fuzzy system (NFS)

Indexed keywords

ADAPTIVE STRUCTURE; ASSOCIATIVE MAPPING; BENCHMARK APPLICATIONS; COMPACT SETS; DATA-DRIVEN; DYNAMIC NATURE; EFSM MODEL; EVOLVING FUZZY SYSTEM; FUZZY RULE-BASED SYSTEMS; FUZZY SEMANTICS; GENETIC FUZZY SYSTEMS; INCREMENTAL LEARNING; INCREMENTAL SEQUENTIAL LEARNING; INTENSIVE RESEARCH; MAMDANI; MODELING PERFORMANCE; NONSTATIONARY; OBSERVED DATA; OPERATING ENVIRONMENT; PARAMETER LEARNING; REAL-WORLD PROBLEM; RESEARCH EFFORTS; RULE BASE; RULE BASIS; SEMANTIC KNOWLEDGE; SEQUENTIAL LEARNING; TIME VARYING; TRAINING DATA;

EID: 73949115619     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2035116     Document Type: Article
Times cited : (51)

References (75)
  • 1
    • 0025405010 scopus 로고
    • Fuzzy logic in control systems: Fuzzy logic controller- Part II
    • Mar./Apr.
    • C. C. Lee, "Fuzzy logic in control systems: Fuzzy logic controller- Part II," IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 419-435, Mar./Apr. 1990.
    • (1990) IEEE Trans. Syst. Man Cybern. , vol.20 , Issue.2 , pp. 419-435
    • Lee, C.C.1
  • 2
    • 0037597549 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds., Berlin, Germany: Springer-Verlag
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds., Interpretability Issues in Fuzzy Modeling. Berlin, Germany: Springer-Verlag, 2003.
    • (2003) Interpretability Issues in Fuzzy Modeling
  • 3
    • 0012045480 scopus 로고
    • Fuzzy neural networks:Asurvey
    • J. J. Buckley and Y. Hayashi, "Fuzzy neural networks:Asurvey," Fuzzy Sets Syst., vol. 66, no. 1, pp. 1-13, 1994.
    • (1994) Fuzzy Sets Syst. , vol.66 , Issue.1 , pp. 1-13
    • Buckley, J.J.1    Hayashi, Y.2
  • 4
    • 0029297401 scopus 로고
    • Neural nets for fuzzy systems
    • J. J. Buckley and Y. Hayashi, "Neural nets for fuzzy systems," Fuzzy Sets Syst., vol. 71, no. 3, pp. 265-276, 1995.
    • (1995) Fuzzy Sets Syst. , vol.71 , Issue.3 , pp. 265-276
    • Buckley, J.J.1    Hayashi, Y.2
  • 6
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/Jun.
    • J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 7
    • 0030481344 scopus 로고    scopus 로고
    • POPFNN: A pseudo outer-product based fuzzy neural network
    • C. Quek and R. W. Zhou, "POPFNN: A pseudo outer-product based fuzzy neural network," Neural Netw., vol. 9, no. 9, pp. 1569-1581, 1996.
    • (1996) Neural Netw. , vol.9 , Issue.9 , pp. 1569-1581
    • Quek, C.1    Zhou, R.W.2
  • 8
    • 0033280325 scopus 로고    scopus 로고
    • POPFNN-AARS(S): A pseudo outer-product based fuzzy neural network
    • Dec.
    • C. Quek and R. Zhou, "POPFNN-AARS(S): A pseudo outer-product based fuzzy neural network," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 6, pp. 859-870, Dec. 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.29 , Issue.6 , pp. 859-870
    • Quek, C.1    Zhou, R.2
  • 9
    • 0344395607 scopus 로고    scopus 로고
    • POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier
    • Dec.
    • K. K. Ang, C. Quek, and M. Pasquier, "POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 33, no. 6, pp. 838-849, Dec. 2003.
    • (2003) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.33 , Issue.6 , pp. 838-849
    • Ang, K.K.1    Quek, C.2    Pasquier, M.3
  • 10
    • 33646746372 scopus 로고    scopus 로고
    • Structure and learning algorithms of a nonsingleton input fuzzy neural network based on the approximate analogical reasoning schema
    • C. Quek and R. Zhou, "Structure and learning algorithms of a nonsingleton input fuzzy neural network based on the approximate analogical reasoning schema," Fuzzy Sets Syst., vol. 157, no. 13, pp. 1814-1831, 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.13 , pp. 1814-1831
    • Quek, C.1    Zhou, R.2
  • 11
    • 42549104888 scopus 로고    scopus 로고
    • DCT-Yager FNN: A novel Yagerbased fuzzy neural network with the discrete clustering technique
    • Apr.
    • A. Singh, C. Quek, and S. Y. Cho, "DCT-Yager FNN: A novel Yagerbased fuzzy neural network with the discrete clustering technique," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 625-644, Apr. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.4 , pp. 625-644
    • Singh, A.1    Quek, C.2    Cho, S.Y.3
  • 12
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • Aug.
    • C. J. Lin and C. T. Lin, "An ART-based fuzzy adaptive learning control network," IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Aug. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 477-496
    • Lin, C.J.1    Lin, C.T.2
  • 13
    • 0035395913 scopus 로고    scopus 로고
    • A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture
    • C. Quek and W. L. Tung, "A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture," Pattern Recognit. Lett., vol. 22, no. 9, pp. 941-958, 2001.
    • (2001) Pattern Recognit. Lett. , vol.22 , Issue.9 , pp. 941-958
    • Quek, C.1    Tung, W.L.2
  • 14
    • 0742272547 scopus 로고    scopus 로고
    • Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms
    • Feb.
    • W. L. Tung and C. Quek, "Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 1, pp. 686-695, Feb. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 686-695
    • Tung, W.L.1    Quek, C.2
  • 15
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamic systems
    • J. Kim and N. Kasabov, "HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamic systems," Neural Netw., vol. 12, no. 9, pp. 1301-1319, 1999.
    • (1999) Neural Netw. , vol.12 , Issue.9 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 16
    • 67349253008 scopus 로고    scopus 로고
    • A decade of Kasabov's evolving connectionist systems: A review
    • May
    • M. J. Watts, "A decade of Kasabov's evolving connectionist systems: A review," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 39, no. 3, pp. 253-269, May 2009.
    • (2009) IEEE Trans. Syst. Man Cybern. C, Appl. Rev. , vol.39 , Issue.3 , pp. 253-269
    • Watts, M.J.1
  • 17
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • DOI 10.1109/3477.969494, PII S1083441901086411
    • N. Kasabov, "Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 31, no. 6, pp. 902-918, Dec. 2001. (Pubitemid 34035554)
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 18
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Apr.
    • N. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 19
    • 0036737109 scopus 로고    scopus 로고
    • GenSoFNN: A generic self-organizing fuzzy neural network
    • Sep.
    • W. L. Tung and C. Quek, "GenSoFNN: A generic self-organizing fuzzy neural network," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1075-1086, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1075-1086
    • Tung, W.L.1    Quek, C.2
  • 20
    • 1942423173 scopus 로고    scopus 로고
    • GenSo-EWS: A novel neural-fuzzy based early warning system for predicting bank failures
    • W. L. Tung, C. Quek, and P. Y. K. Cheng, "GenSo-EWS: A novel neural-fuzzy based early warning system for predicting bank failures," Neural Netw., vol. 17, no. 4, pp. 567-587, 2004.
    • (2004) Neural Netw. , vol.17 , Issue.4 , pp. 567-587
    • Tung, W.L.1    Quek, C.2    Cheng, P.Y.K.3
  • 21
    • 11144351004 scopus 로고    scopus 로고
    • GenSo-FDSS: A neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data
    • W. L. Tung and C. Quek, "GenSo-FDSS: A neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data," Artif. Intell. Med., vol. 33, no. 1, pp. 61-88, 2005.
    • (2005) Artif. Intell. Med. , vol.33 , Issue.1 , pp. 61-88
    • Tung, W.L.1    Quek, C.2
  • 22
    • 34648843755 scopus 로고    scopus 로고
    • A brain-inspired fuzzy semantic memory model for learning and reasoning with uncertainty
    • W. L. Tung and C. Quek, "A brain-inspired fuzzy semantic memory model for learning and reasoning with uncertainty," Neural Comput. Appl., vol. 16, no. 6, pp. 559-569, 2007.
    • (2007) Neural Comput. Appl. , vol.16 , Issue.6 , pp. 559-569
    • Tung, W.L.1    Quek, C.2
  • 23
    • 48749096848 scopus 로고    scopus 로고
    • GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference
    • R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Syst. Appl., vol. 35, no. 4, pp. 1825-1840, 2008.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.4 , pp. 1825-1840
    • Oentaryo, R.J.1    Pasquier, M.2    Quek, C.3
  • 24
    • 34047105204 scopus 로고    scopus 로고
    • FCMAC-Yager: A novel Yager inference scheme based fuzzy CMAC
    • Dec.
    • J. Sim, W. L. Tung, and C. Quek, "FCMAC-Yager: A novel Yager inference scheme based fuzzy CMAC," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1394-1410, Dec. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1394-1410
    • Sim, J.1    Tung, W.L.2    Quek, C.3
  • 25
    • 36348933465 scopus 로고    scopus 로고
    • Hierarchically clustered adaptive quantization CMAC and its learning convergence
    • Dec.
    • S. D. Teddy, E.M. K. Lai, and C. Quek, "Hierarchically clustered adaptive quantization CMAC and its learning convergence," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1658-1682, Dec. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.6 , pp. 1658-1682
    • Teddy, S.D.1    Lai, E.M.K.2    Quek, C.3
  • 26
    • 42549143443 scopus 로고    scopus 로고
    • PSECMAC: A novel self-organizing multi-resolution associative memory architecture
    • Apr.
    • S. D. Teddy, C. Quek, and E. M. K. Lai, "PSECMAC: A novel self-organizing multi-resolution associative memory architecture," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 689-712, Apr. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.4 , pp. 689-712
    • Teddy, S.D.1    Quek, C.2    Lai, E.M.K.3
  • 27
    • 56549107407 scopus 로고    scopus 로고
    • A cerebellar associative memory approach to option pricing and arbitrage trading
    • S. D. Teddy, E. M. K. Lai, and C. Quek, "A cerebellar associative memory approach to option pricing and arbitrage trading," Neurocomputing, vol. 71, no. 16-18, pp. 3303-3315, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3303-3315
    • Teddy, S.D.1    Lai, E.M.K.2    Quek, C.3
  • 28
    • 67349222850 scopus 로고    scopus 로고
    • A novel blood glucose regulation using TSK -FCMAC: A fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme
    • May
    • C. W. Ting and C. Quek, "A novel blood glucose regulation using TSK -FCMAC: A fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme," IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 856-871, May 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.5 , pp. 856-871
    • Ting, C.W.1    Quek, C.2
  • 29
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • May
    • S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft computing framework," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 748-768, May 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 31
    • 0346781553 scopus 로고    scopus 로고
    • Ten years of genetic fuzzy systems: Current framework and new trends
    • O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, "Ten years of genetic fuzzy systems: Current framework and new trends," Fuzzy Sets Syst., vol. 141, no. 1, pp. 5-31, 2004.
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.1 , pp. 5-31
    • Cordon, O.1    Gomide, F.2    Herrera, F.3    Hoffmann, F.4    Magdalena, L.5
  • 32
    • 33748894279 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Status, critical considerations and future directions
    • F. Herrera, "Genetic fuzzy systems: Status, critical considerations and future directions," Int. J. Comput. Intell. Res., vol. 1, no. 1, pp. 59-67, 2005.
    • (2005) Int. J. Comput. Intell. Res. , vol.1 , Issue.1 , pp. 59-67
    • Herrera, F.1
  • 33
    • 0033281103 scopus 로고    scopus 로고
    • A two-stage evolutionary process for designing TSK fuzzy rule-based systems
    • Dec.
    • O. Cordon and F. Herrera, "A two-stage evolutionary process for designing TSK fuzzy rule-based systems," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 6, pp. 703-715, Dec. 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.29 , Issue.6 , pp. 703-715
    • Cordon, O.1    Herrera, F.2
  • 35
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and K. F. Man, "Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction," Fuzzy Sets Syst., vol. 149, no. 1, pp. 149-186, 2005.
    • (2005) Fuzzy Sets Syst. , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5
  • 36
    • 0035483857 scopus 로고    scopus 로고
    • Fuzzy CoCo: A cooperative-coevolutionary approach to fuzzy modeling
    • Oct.
    • C. Pena-Reyes and M. Sipper, "Fuzzy CoCo: A cooperative- coevolutionary approach to fuzzy modeling," IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 727-737, Oct. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.5 , pp. 727-737
    • Pena-Reyes, C.1    Sipper, M.2
  • 37
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Dec.
    • G. Leng, T. M. McGinnity, and G. Prasad, "Design for self-organizing fuzzy neural networks based on genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 755-766, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 38
    • 34548246008 scopus 로고    scopus 로고
    • Fuzzy-XCS: A Michigan genetic fuzzy system
    • Aug.
    • J. Casillas, B. Carse, and L. Bull, "Fuzzy-XCS: A Michigan genetic fuzzy system," IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 536-550, Aug. 2007.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.4 , pp. 536-550
    • Casillas, J.1    Carse, B.2    Bull, L.3
  • 39
    • 58149517300 scopus 로고    scopus 로고
    • Efficient self-evolving evolutionary learning for neurofuzzy inference systems
    • Dec.
    • C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1476-1490, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1476-1490
    • Lin, C.J.1    Chen, C.H.2    Lin, C.T.3
  • 40
    • 50549085684 scopus 로고    scopus 로고
    • SGERD: A steadystate genetic algorithm for extracting fuzzy classification rules from data
    • Aug.
    • E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, "SGERD: A steadystate genetic algorithm for extracting fuzzy classification rules from data," IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 1061-1071, Aug. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.4 , pp. 1061-1071
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 41
    • 59749100673 scopus 로고    scopus 로고
    • Financial market trading system with a hierarchical coevolutionary fuzzy predictive model
    • Feb.
    • H. M. Huang, M. Pasquier, and C. Quek, "Financial market trading system with a hierarchical coevolutionary fuzzy predictive model," IEEE Trans. Evol. Comput., vol. 13, no. 1, pp. 56-70, Feb. 2009.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.1 , pp. 56-70
    • Huang, H.M.1    Pasquier, M.2    Quek, C.3
  • 42
    • 27844554901 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • L. Nadel, Ed. London, U.K.: Nature Publishing Group
    • R. M. French, "Catastrophic forgetting in connectionist networks," in Encyclopedia of Cognitive Science, L. Nadel, Ed. London, U.K.: Nature Publishing Group, 2003, vol. 1, pp. 431-435.
    • (2003) Encyclopedia of Cognitive Science , vol.1 , pp. 431-435
    • French, R.M.1
  • 44
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb
    • P. P. Angelov and D. P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 45
    • 0031999146 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C. F. Juang and C. T. Lin, "An online self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 46
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 47
    • 51349137176 scopus 로고    scopus 로고
    • An incremental learning structure using granular computing and model fusion with application to materials processing
    • ser. Studies in Computational Intelligence (SCI). Berlin, Germany: Springer-Verlag
    • G. Panoutsos and M. Mahfouf, "An incremental learning structure using granular computing and model fusion with application to materials processing," in Intelligent Techniques and Tools for Novel System Architectures, ser. Studies in Computational Intelligence (SCI). Berlin, Germany: Springer-Verlag, 2008, vol. 109, pp. 139-153.
    • (2008) Intelligent Techniques and Tools for Novel System Architectures , vol.109 , pp. 139-153
    • Panoutsos, G.1    Mahfouf, M.2
  • 48
    • 34447274800 scopus 로고    scopus 로고
    • On-line identification of computationally undemanding evolving fuzzy models
    • J. C. de Barros and A. L. Dexter, "On-line identification of computationally undemanding evolving fuzzy models," Fuzzy Sets Syst., vol. 158, no. 18, pp. 1997-2012, 2007.
    • (2007) Fuzzy Sets Syst. , vol.158 , Issue.18 , pp. 1997-2012
    • De Barros, J.C.1    Dexter, A.L.2
  • 49
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • Dec.
    • E. D. Lughofer, "FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1393-1410, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.D.1
  • 50
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
    • Dec.
    • C. F. Juang and Y. W. Tsao, "A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411-1424, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1411-1424
    • Juang, C.F.1    Tsao, Y.W.2
  • 51
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • Dec.
    • P. P. Angelov and X. W. Zhou, "Evolving fuzzy-rule-based classifiers from data streams," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1462-1475, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1462-1475
    • Angelov, P.P.1    Zhou, X.W.2
  • 52
    • 58149524919 scopus 로고    scopus 로고
    • Fully evolvable optimal neurofuzzy controller using adaptive critic designs
    • Dec.
    • S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, "Fully evolvable optimal neurofuzzy controller using adaptive critic designs," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1450-1461, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1450-1461
    • Mohagheghi, S.1    Venayagamoorthy, G.K.2    Harley, R.G.3
  • 53
    • 58149502268 scopus 로고    scopus 로고
    • An evolving fuzzy predictor for industrial applications
    • Dec.
    • W.Wang and J. J. Vrbanek, "An evolving fuzzy predictor for industrial applications," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1439-1449, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1439-1449
    • Wang, W.1    Vrbanek, J.J.2
  • 55
    • 0029287724 scopus 로고
    • Fuzzy logic controllers are universal approximators
    • Apr.
    • J. L. Castro, "Fuzzy logic controllers are universal approximators," IEEE Trans. Syst. Man Cybern., vol. 25, no. 4, pp. 629-635, Apr. 1995.
    • (1995) IEEE Trans. Syst. Man Cybern. , vol.25 , Issue.4 , pp. 629-635
    • Castro, J.L.1
  • 56
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic systems
    • Dec.
    • E. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic systems," IEEE Trans. Comput., vol. C-26, no. 12, pp. 1182-1191, Dec. 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.12
    • Mamdani, E.1
  • 57
    • 33748060215 scopus 로고    scopus 로고
    • Learning induces long-term potentiation in the hippocampus
    • J. R. Whitlock, A. J. Heynen, M. G. Shuler, and M. F. Bear, "Learning induces long-term potentiation in the hippocampus," Science, vol. 313, no. 5790, pp. 1093-1097, 2006.
    • (2006) Science , vol.313 , Issue.5790 , pp. 1093-1097
    • Whitlock, J.R.1    Heynen, A.J.2    Shuler, M.G.3    Bear, M.F.4
  • 58
    • 0029990059 scopus 로고    scopus 로고
    • Long-term depression in hippocampus
    • M. F. Bear and W. C. Abraham, "Long-term depression in hippocampus," Annu. Rev. Neurosci., vol. 19, pp. 437-462, 1996.
    • (1996) Annu. Rev. Neurosci. , vol.19 , pp. 437-462
    • Bear, M.F.1    Abraham, W.C.2
  • 60
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability- oriented review
    • Jun.
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability- oriented review," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 426-443, Jun. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 61
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Aug.
    • J. Yen, L. Wang, and C. Gillespie, "Improving the interpretability of TSK fuzzy models by combining global learning and local learning," IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 530-537, Aug. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.3
  • 65
    • 34249723182 scopus 로고    scopus 로고
    • A novel generic Hebbian ordering based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system
    • F. Liu, C. Quek, and G. S. Ng, "A novel generic Hebbian ordering based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system," Neural Comput., vol. 19, no. 6, pp. 1656-1680, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.6 , pp. 1656-1680
    • Liu, F.1    Quek, C.2    Ng, G.S.3
  • 66
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: Rough set-based pseudo outerproduct fuzzy rule identification algorithm
    • K. K. Ang and C. Quek, "RSPOP: Rough set-based pseudo outerproduct fuzzy rule identification algorithm," Neural Comput., vol. 17, no. 1, pp. 205-243, 2005.
    • (2005) Neural Comput. , vol.17 , Issue.1 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 68
    • 0033362341 scopus 로고    scopus 로고
    • Combining rough sets and data-drivenfuzzy learning for generation of classification rules
    • Q. Shen and A. Chouchoulas, "Combining rough sets and data-drivenfuzzy learning for generation of classification rules," Pattern Recognit., vol. 32, no. 12, pp. 2073-2076, 1999.
    • (1999) Pattern Recognit. , vol.32 , Issue.12 , pp. 2073-2076
    • Shen, Q.1    Chouchoulas, A.2
  • 69
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man Cybern., vol. SMC-15, no. 1, pp. 116-132, Feb. 1985.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 70
    • 6344264442 scopus 로고    scopus 로고
    • Interpretability improvements to find the balance interpretability- accuracy in fuzzy modeling: An overview
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds. NewYork: Springer-Verlag
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, "Interpretability improvements to find the balance interpretability- accuracy in fuzzy modeling: An overview," in Interpretability Issues in Fuzzy Modeling, J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds. NewYork: Springer-Verlag, 2003, pp. 3-22.
    • (2003) Interpretability Issues in Fuzzy Modeling , pp. 3-22
    • Casillas, J.1    Cordon, O.2    Herrera, F.3    Magdalena, L.4
  • 71
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • E. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," Int. J. Man-Mach. Studies, vol. 7, pp. 1-13, 1975.
    • (1975) Int. J. Man-Mach. Studies , vol.7 , pp. 1-13
    • Mamdani, E.1    Assilian, S.2
  • 72
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
    • Y. W. Lu, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Comput., vol. 9, no. 3, pp. 461-478, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.3 , pp. 461-478
    • Lu, Y.W.1    Sundararajan, N.2    Saratchandran, P.3
  • 73
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Comput., vol. 5, no. 6, pp. 954-975, 1993.
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 74
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol. 3, no. 2, pp. 213-225, 1991.
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.