메뉴 건너뛰기




Volumn 150, Issue 2, 2005, Pages 331-350

NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches

Author keywords

Fuzzy neural networks; NARMAX models; Takagi Sugeno Kang fuzzy inference systems; Time series prediction

Indexed keywords

FUZZY NEURAL NETWORKS (FNN); NARMAX MODELS; TAKAGI-SUGENO-KANG FUZZY INFERENCE SYSTEMS; TIME SERIES PREDICTION;

EID: 11244305511     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2004.09.015     Document Type: Article
Times cited : (227)

References (19)
  • 2
    • 0030130047 scopus 로고    scopus 로고
    • Simplification of fuzzy-neural systems using similarity analysis
    • C.T. Chao, Y.J. Chen, and C.C. Teng Simplification of fuzzy-neural systems using similarity analysis IEEE Trans. Systems, Man Cybernet. 26 1996 344 354
    • (1996) IEEE Trans. Systems, Man Cybernet. , vol.26 , pp. 344-354
    • Chao, C.T.1    Chen, Y.J.2    Teng, C.C.3
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function network IEEE Trans. Neural Networks 2 1991 302 309
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K.B. Cho, and B.H. Wang Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction Fuzzy Sets and Systems 83 1996 325 339
    • (1996) Fuzzy Sets and Systems , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 6
    • 0042880039 scopus 로고    scopus 로고
    • Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems
    • Y. Gao, and M.J. Er Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems IEEE Trans. Fuzzy Systems 11 2003 462 477
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , pp. 462-477
    • Gao, Y.1    Er, M.J.2
  • 7
    • 15344342155 scopus 로고    scopus 로고
    • An intelligent adaptive control scheme for postsurgical blood pressure regulation
    • Y. Gao, M.J. Er, An intelligent adaptive control scheme for postsurgical blood pressure regulation, IEEE Trans. Neural Networks, 16 (2004).
    • (2004) IEEE Trans. Neural Networks , vol.16
    • Gao, Y.1    Er, M.J.2
  • 8
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang ANFIS adaptive-network-based fuzzy inference system IEEE Trans. Systems Man Cybernet. 23 1993 665 684
    • (1993) IEEE Trans. Systems Man Cybernet. , vol.23 , pp. 665-684
    • Jang, J.S.R.1
  • 9
    • 0742285809 scopus 로고    scopus 로고
    • Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes
    • C.F. Juang Temporal problems solved by dynamic fuzzy network based on genetic algorithm with variable-length chromosomes Fuzzy Sets and Systems 142 2004 199 219
    • (2004) Fuzzy Sets and Systems , vol.142 , pp. 199-219
    • Juang, C.F.1
  • 10
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N.K. Kasabov, and Q. Song DENFIS dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Trans. Fuzzy Systems 10 2002 144 154
    • (2002) IEEE Trans. Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 11
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • J. Kim, and N. Kasabov HyFIS adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems Neural Networks 12 1999 1301 1319
    • (1999) Neural Networks , vol.12 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 12
    • 11244354457 scopus 로고    scopus 로고
    • Identification and prediction using recurrent compensatory neuro-fuzzy systems
    • Available online 11 August, in press
    • C.J. Lin, C.H. Chen, Identification and prediction using recurrent compensatory neuro-fuzzy systems, Fuzzy Sets and Systems, Available online 11 August 2004, in press.
    • (2004) Fuzzy Sets and Systems
    • Lin, C.J.1    Chen, C.H.2
  • 13
    • 0142216225 scopus 로고    scopus 로고
    • An orthogonal least-squares method for recurrent fuzzy-neural modeling
    • P.A. Mastorocostas, and J.B. Theocharis An orthogonal least-squares method for recurrent fuzzy-neural modeling Fuzzy Sets and Systems 140 2003 285 300
    • (2003) Fuzzy Sets and Systems , vol.140 , pp. 285-300
    • Mastorocostas, P.A.1    Theocharis, J.B.2
  • 14
    • 0037448873 scopus 로고    scopus 로고
    • A load curve based fuzzy modeling technique for short-term load forecasting
    • S.E. Papadakis, J.B. Theocharis, and A.G. Bakirtzis A load curve based fuzzy modeling technique for short-term load forecasting Fuzzy Sets and Systems 135 2003 279 303
    • (2003) Fuzzy Sets and Systems , vol.135 , pp. 279-303
    • Papadakis, S.E.1    Theocharis, J.B.2    Bakirtzis, A.G.3
  • 17
    • 0035666428 scopus 로고    scopus 로고
    • Improved RAN sequential prediction using orthogonal techniques
    • M. Salmeron, J. Ortega, C.G. Puntonet, and A. Prieto Improved RAN sequential prediction using orthogonal techniques Neurocomputing 41 2001 153 172
    • (2001) Neurocomputing , vol.41 , pp. 153-172
    • Salmeron, M.1    Ortega, J.2    Puntonet, C.G.3    Prieto, A.4
  • 19
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks - A novel approach to function approximation
    • S. Wu, and M.J. Er Dynamic fuzzy neural networks - a novel approach to function approximation IEEE Trans. Systems Man Cybernet. Part B 30 2000 358 364
    • (2000) IEEE Trans. Systems Man Cybernet. Part B , vol.30 , pp. 358-364
    • Wu, S.1    Er, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.