-
1
-
-
34247596518
-
Sparseness vs estimating conditional probabilities: Some asymptotic results
-
Bartlett, P. L. and Tewari, A. Sparseness vs estimating conditional probabilities: Some asymptotic results. Journal of Machine Learning Research, 8:775-790, 2007. (Pubitemid 46677047)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 775-790
-
-
Bartlett, P.L.1
Tewari, A.2
-
2
-
-
0001626339
-
A classification EM algorithm for clustering and two stochastic versions
-
Celeux, G. and Covaert, G. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics & Data Analysis, 14(3), 1992.
-
(1992)
Computational Statistics & Data Analysis
, vol.14
, Issue.3
-
-
Celeux, G.1
Covaert, G.2
-
3
-
-
34147123962
-
Interpretation of SVMs with an application to unbalanced classification
-
Grandvalet, Y., Mariéthoz, J., and Bengio, S. Interpretation of SVMs with an application to unbalanced classification. Advances in Neural Information Processing Systems, NIPS 18, 2005.
-
(2005)
Advances in Neural Information Processing Systems, NIPS 18
-
-
Grandvalet, Y.1
Mariéthoz, J.2
Bengio, S.3
-
4
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf, B., Burges, C. J. C., and Smola, A. J. (eds.), MIT Press, Cambridge, MA
-
Joachims, T. Making large-scale SVM learning practical. In Schölkopf, B., Burges, C. J. C., and Smola, A. J. (eds.), Advances in Kernel Methods - Support Vector Learning, pp. 169-184. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
5
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
A. Smola et al. (ed.), MIT Press, Cambridge, MA
-
Platt, J. C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. Smola et al. (ed.), Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Platt, J.C.1
-
7
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B, Smola, AJ, Williamson, RC, and Bartlett, PL. New support vector algorithms. Neural Computation, 12(5):1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
8
-
-
0001340183
-
Clustering methods based on likelihood ratio criteria
-
Scott, A.J. and Symons, M.J. Clustering methods based on likelihood ratio criteria. Biometrics, 27: 387-389, 1971.
-
(1971)
Biometrics
, vol.27
, pp. 387-389
-
-
Scott, A.J.1
Symons, M.J.2
-
9
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
DOI 10.1023/A:1012489924661
-
Sollich, P. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine learning, 46(1):21-52, 2002. (Pubitemid 34129962)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 21-52
-
-
Sollich, P.1
-
12
-
-
84898944155
-
Maximum margin clustering
-
Xu, L., Neufeld, J., Larson, B., and Schuurmans, D. Maximum margin clustering. In Proc. of Neural Information Processing Systems (NIPS), 2004.
-
Proc. of Neural Information Processing Systems (NIPS), 2004
-
-
Xu, L.1
Neufeld, J.2
Larson, B.3
Schuurmans, D.4
|