메뉴 건너뛰기




Volumn 44, Issue , 2013, Pages 90-100

An accelerator for attribute reduction based on perspective of objects and attributes

Author keywords

Accelerating algorithm; Attribute reduction; Feature selection; Large scale data; Rough set

Indexed keywords

ACCELERATING ALGORITHM; ACTIVE AREA; ATTRIBUTE REDUCTION; ATTRIBUTE REDUCTION ALGORITHM; ATTRIBUTE SETS; COMPUTATIONAL TIME; LARGE SCALE DATA; LARGE-SCALE DATASETS;

EID: 84875757532     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.01.027     Document Type: Article
Times cited : (42)

References (47)
  • 1
    • 67349183937 scopus 로고    scopus 로고
    • Rough-fuzzy weighted k-nearest leader classifier for large datasets
    • V.S. Babu, and P. Viswanath Rough-fuzzy weighted k-nearest leader classifier for large datasets Pattern Recognition 42 2009 1719 1731
    • (2009) Pattern Recognition , vol.42 , pp. 1719-1731
    • Babu, V.S.1    Viswanath, P.2
  • 2
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artificial Intelligence 151 2003 155 176
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 3
    • 79957534578 scopus 로고    scopus 로고
    • A vague-rough set approach for uncertain knowledge acquisition
    • L. Feng, T.R. Li, D. Ruan, and S.R. Gou A vague-rough set approach for uncertain knowledge acquisition Knowledge-Based Systems 24 6 2011 837 843
    • (2011) Knowledge-Based Systems , vol.24 , Issue.6 , pp. 837-843
    • Feng, L.1    Li, T.R.2    Ruan, D.3    Gou, S.R.4
  • 5
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Q.H. Hu, D.R. Yu, and Z.X. Xie Information-preserving hybrid data reduction based on fuzzy-rough techniques Pattern Recognition Letters 27 5 2006 414 423
    • (2006) Pattern Recognition Letters , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 6
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 2007 3509 3521
    • (2007) Pattern Recognition , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 7
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Q.H. Hu, J.F. Liu, and D.R. Yu Mixed feature selection based on granulation and approximation Knowledge-Based Systems 21 4 2008 294 304
    • (2008) Knowledge-Based Systems , vol.21 , Issue.4 , pp. 294-304
    • Hu, Q.H.1    Liu, J.F.2    Yu, D.R.3
  • 9
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • R. Jensen, and Q. Shen Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches IEEE Transactions on Knowledge and Data Engineering 16 12 2004 1457 1471
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 10
    • 76649084419 scopus 로고    scopus 로고
    • FUN: Fast discovery of minimal sets of attributes functionally determining a decision attribute
    • M. Kryszkiewicz, and P. Lasek FUN: fast discovery of minimal sets of attributes functionally determining a decision attribute Transactions on Rough Sets 9 2008 76 95
    • (2008) Transactions on Rough Sets , vol.9 , pp. 76-95
    • Kryszkiewicz, M.1    Lasek, P.2
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324
    • (1997) Artificial Intelligence , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 12
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence-based feature selection for machine learning-based text categorization
    • C.K. Lee, and G.G. Lee Information gain and divergence-based feature selection for machine learning-based text categorization Information Processing and Management 42 2006 155 165
    • (2006) Information Processing and Management , vol.42 , pp. 155-165
    • Lee, C.K.1    Lee, G.G.2
  • 16
    • 56949107327 scopus 로고    scopus 로고
    • A new measure of uncertainty based on knowledge granulation for rough sets
    • J.Y. Liang, J.H. Wang, and Y.H. Qian A new measure of uncertainty based on knowledge granulation for rough sets Information Sciences 179 4 2009 458 470
    • (2009) Information Sciences , vol.179 , Issue.4 , pp. 458-470
    • Liang, J.Y.1    Wang, J.H.2    Qian, Y.H.3
  • 17
    • 65849531452 scopus 로고    scopus 로고
    • A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets
    • Z.Q. Meng, and Z.Z. Shi A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets Information Sciences 179 2009 2774 2793
    • (2009) Information Sciences , vol.179 , pp. 2774-2793
    • Meng, Z.Q.1    Shi, Z.Z.2
  • 19
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • N.M. Parthaláin, and Q. Shen Exploring the boundary region of tolerance rough sets for feature selection Pattern Recognition 42 2009 655 667
    • (2009) Pattern Recognition , vol.42 , pp. 655-667
    • Parthaláin, N.M.1    Shen, Q.2
  • 23
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and boolean reasoning
    • Z. Pawlak, and A. Skowron Rough sets and boolean reasoning Information Sciences 177 1 2007 41 73
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 24
    • 0036532805 scopus 로고    scopus 로고
    • Feature analysis through information granulation and fuzzy sets
    • W. Pedrycz, and G. Vukovich Feature analysis through information granulation and fuzzy sets Pattern Recognition 35 2002 825 834
    • (2002) Pattern Recognition , vol.35 , pp. 825-834
    • Pedrycz, W.1    Vukovich, G.2
  • 25
    • 24344458137 scopus 로고    scopus 로고
    • Features selection based on mutual information: Criteria ofmax-dependency, max-relevance, and min-redundance
    • H. Peng, F. Long, and C. Ding Features selection based on mutual information: criteria ofmax-dependency, max-relevance, and min-redundance IEEE transactions on pattern analysis machine intellegence 27 8 2005 1226 1238
    • (2005) IEEE Transactions on Pattern Analysis Machine Intellegence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 26
    • 79953066019 scopus 로고    scopus 로고
    • An efficient accelerator for attribute reduction from incomplete data in rough set framework
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang An efficient accelerator for attribute reduction from incomplete data in rough set framework Pattern Recognition 44 2011 1658 1670
    • (2011) Pattern Recognition , vol.44 , pp. 1658-1670
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 27
    • 34948842036 scopus 로고    scopus 로고
    • Measures for evaluating the decision performance of a decision table in rough set theory
    • Y.H. Qian, J.Y. Liang, D.Y. Li, H.Y. Zhang, and C.Y. Dang Measures for evaluating the decision performance of a decision table in rough set theory Information Sciences 178 2008 181 202
    • (2008) Information Sciences , vol.178 , pp. 181-202
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Zhang, H.Y.4    Dang, C.Y.5
  • 29
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligences 174 9-10 2010 597 618
    • (2010) Artificial Intelligences , vol.174 , Issue.910 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 30
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga A review of feature selection techniques in bioinformatics Bioinformatics 23 19 2007 2507 2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 31
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Q. Shen, and A. Chouchoulas A rough-fuzzy approach for generating classification rules Pattern Recognition 35 2002 2425 2438
    • (2002) Pattern Recognition , vol.35 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 32
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Q. Shen, and R. Jensen Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring Pattern Recognition 37 2004 1351 1363
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 34
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • D. Slezak Approximate entropy reducts Fundamenta Informaticae 53 3-4 2002 365 390
    • (2002) Fundamenta Informaticae , vol.53 , Issue.34 , pp. 365-390
    • Slezak, D.1
  • 35
    • 84875756602 scopus 로고
    • Research report, Institute of Computer Science, Warsaw University of Technology
    • D. Slezak, Approximate Reducts in Decision Tables, Research report, Institute of Computer Science, Warsaw University of Technology, 1995.
    • (1995) Approximate Reducts in Decision Tables
    • Slezak, D.1
  • 36
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognition Letters 24 2003 833 849
    • (2003) Pattern Recognition Letters , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 38
    • 0036662454 scopus 로고    scopus 로고
    • Decision table reduction based on conditional information entropy
    • G.Y. Wang, H. Yu, and D.C. Yang Decision table reduction based on conditional information entropy Chinese Journal of Computer 25 7 2002 759 766
    • (2002) Chinese Journal of Computer , vol.25 , Issue.7 , pp. 759-766
    • Wang, G.Y.1    Yu, H.2    Yang, D.C.3
  • 39
    • 33645310674 scopus 로고    scopus 로고
    • A comparative study of algebra viewpoint and information viewpoint in attribute reduction
    • G.Y. Wang, J. Zhao, and J.J. An A comparative study of algebra viewpoint and information viewpoint in attribute reduction Fundamenta Informaticae 68 3 2005 289 301
    • (2005) Fundamenta Informaticae , vol.68 , Issue.3 , pp. 289-301
    • Wang, G.Y.1    Zhao, J.2    An, J.J.3
  • 41
    • 77957903157 scopus 로고    scopus 로고
    • Comparative study of decision performance of decision tables induced by attribute reductions
    • W. Wei, J.Y. Liang, Y.H. Qian, F. Wang, and C.Y. Dang Comparative study of decision performance of decision tables induced by attribute reductions International Journal of General Systems 39 8 2010 813 838
    • (2010) International Journal of General Systems , vol.39 , Issue.8 , pp. 813-838
    • Wei, W.1    Liang, J.Y.2    Qian, Y.H.3    Wang, F.4    Dang, C.Y.5
  • 44
    • 79957471167 scopus 로고    scopus 로고
    • Neighborhood systems-based rough sets in incomplete information system
    • X.B. Yang, M. Zhang, H.L. Dou, and J.Y. Yang Neighborhood systems-based rough sets in incomplete information system Knowledge-Based Systems 24 2011 858 867
    • (2011) Knowledge-Based Systems , vol.24 , pp. 858-867
    • Yang, X.B.1    Zhang, M.2    Dou, H.L.3    Yang, J.Y.4
  • 45
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Y.Y. Yao, and Y. Zhao Attribute reduction in decision-theoretic rough set models Information Sciences 178 17 2008 3356 3373
    • (2008) Information Sciences , vol.178 , Issue.17 , pp. 3356-3373
    • Yao, Y.Y.1    Zhao, Y.2
  • 46
    • 58249098798 scopus 로고    scopus 로고
    • Discernility matrix simplification for constructing attribute reducts
    • Y.Y. Yao, and Y. Zhao Discernility matrix simplification for constructing attribute reducts Information sciences 179 2009 867 882
    • (2009) Information Sciences , vol.179 , pp. 867-882
    • Yao, Y.Y.1    Zhao, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.