-
1
-
-
73349108769
-
Sufficient dimension reduction and prediction in regressions
-
Adragni, K. & Cook, R.D. (2009). Sufficient dimension reduction and prediction in regressions. Philos. Trans. R. Soc., A, 367, 4385-4405.
-
(2009)
Philos. Trans. R. Soc., A
, vol.367
, pp. 4385-4405
-
-
Adragni, K.1
Cook, R.D.2
-
2
-
-
0031477519
-
A Gauss implementation of multivariate sliced inverse regression
-
Aragon, Y. (1997). A Gauss implementation of multivariate sliced inverse regression. Comput. Statist., 12, 355-372.
-
(1997)
Comput. Statist.
, vol.12
, pp. 355-372
-
-
Aragon, Y.1
-
3
-
-
0003962285
-
-
Baltimore : The Johns Hopkins University Press.
-
Bickel, P.J., Klaassen, C.A.J., Ritov, Y. & Wellner, J.A. (1993). Efficient and Adaptive Estimation for Semiparametric Models . Baltimore : The Johns Hopkins University Press.
-
(1993)
Efficient and Adaptive Estimation for Semiparametric Models
-
-
Bickel, P.J.1
Klaassen, C.A.J.2
Ritov, Y.3
Wellner, J.A.4
-
4
-
-
0000133998
-
An analysis of transformations (with discussion)
-
Box, G.E.P. & Cox, D.R. (1964). An analysis of transformations (with discussion). J. R. Stat. Soc. Ser. B, 26, 211-252.
-
(1964)
J. R. Stat. Soc. Ser. B
, vol.26
, pp. 211-252
-
-
Box, G.E.P.1
Cox, D.R.2
-
5
-
-
0442280663
-
Extending sliced inverse regression: the weighted Chi-squared test
-
Bura, E. & Cook, R.D. (2001). Extending sliced inverse regression: the weighted Chi-squared test. J. Amer. Statist. Assoc., 96, 996-1003.
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 996-1003
-
-
Bura, E.1
Cook, R.D.2
-
6
-
-
77957756004
-
Dimension estimation in sufficient dimension reduction: a unifying approach
-
Bura, E. & Yang, J. (2011). Dimension estimation in sufficient dimension reduction: a unifying approach. J. Multivariate Anal., 102, 130-142.
-
(2011)
J. Multivariate Anal.
, vol.102
, pp. 130-142
-
-
Bura, E.1
Yang, J.2
-
7
-
-
34548275795
-
The Dantzig selector: statistical estimation when p is much larger than n (with discussion)
-
Candes, E. & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n (with discussion). Ann. Statist., 35, 2313-2404.
-
(2007)
Ann. Statist.
, vol.35
, pp. 2313-2404
-
-
Candes, E.1
Tao, T.2
-
8
-
-
0032367227
-
Can SIR be as popular as multiple linear regression
-
Chen, C.H. & Li, K.C. (1998). Can SIR be as popular as multiple linear regression? Statist. Sinica, 8, 289-316.
-
(1998)
Statist. Sinica
, vol.8
, pp. 289-316
-
-
Chen, C.H.1
Li, K.C.2
-
9
-
-
21344476749
-
On the interpretation of regression plots
-
Cook, R.D. (1994). On the interpretation of regression plots. J. Amer. Statist. Assoc., 89, 177-189.
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 177-189
-
-
Cook, R.D.1
-
11
-
-
15844416978
-
Testing predictor contributions in sufficient dimension reduction
-
Cook, R.D. (2004). Testing predictor contributions in sufficient dimension reduction. Ann. Statist., 32, 1062-1092.
-
(2004)
Ann. Statist.
, vol.32
, pp. 1062-1092
-
-
Cook, R.D.1
-
12
-
-
67649383322
-
Principal fitted components for dimension reduction in regression
-
Cook, R.D. & Forzani, L. (2008). Principal fitted components for dimension reduction in regression. Statist. Sci., 23, 485-501.
-
(2008)
Statist. Sci.
, vol.23
, pp. 485-501
-
-
Cook, R.D.1
Forzani, L.2
-
13
-
-
0442278036
-
Dimension reduction in binary response regression
-
Cook, R.D. & Lee, H. (1999). Dimension reduction in binary response regression. J. Amer. Statist. Assoc., 94, 1187-1200.
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, pp. 1187-1200
-
-
Cook, R.D.1
Lee, H.2
-
14
-
-
0036284461
-
Dimension reduction for conditional mean in regression
-
Cook, R.D. & Li, B. (2002). Dimension reduction for conditional mean in regression. Ann. Statist., 30, 455-474.
-
(2002)
Ann. Statist.
, vol.30
, pp. 455-474
-
-
Cook, R.D.1
Li, B.2
-
15
-
-
21644461782
-
Determining the dimension of iterative Hessian transformation
-
Cook, R.D. & Li, B. (2004). Determining the dimension of iterative Hessian transformation. Ann. Statist., 32, 2501-2531.
-
(2004)
Ann. Statist.
, vol.32
, pp. 2501-2531
-
-
Cook, R.D.1
Li, B.2
-
16
-
-
34548529252
-
Dimension reduction in regression without matrix inversion
-
Cook, R.D., Li, B. & Chiaromonte, F. (2007). Dimension reduction in regression without matrix inversion. Biometrika, 94, 569-584.
-
(2007)
Biometrika
, vol.94
, pp. 569-584
-
-
Cook, R.D.1
Li, B.2
Chiaromonte, F.3
-
17
-
-
78349232766
-
Envelope models for parsimonious and efficient multivariate liner regression
-
Cook, R.D., Li, B. & Chiaromonte, F. (2010). Envelope models for parsimonious and efficient multivariate liner regression. Statist. Sinica, 20, 927-1010.
-
(2010)
Statist. Sinica
, vol.20
, pp. 927-1010
-
-
Cook, R.D.1
Li, B.2
Chiaromonte, F.3
-
18
-
-
21344494639
-
Reweighting to achieve elliptically contoured covariates in regression
-
Cook, R.D. & Nachtsheim, C.J. (1994). Reweighting to achieve elliptically contoured covariates in regression. J. Amer. Statist. Assoc., 89, 592-599.
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 592-599
-
-
Cook, R.D.1
Nachtsheim, C.J.2
-
19
-
-
20444454672
-
Sufficient dimension reduction via inverse regression: a minimum discrepancy approach
-
Cook, R.D. & Ni, L. (2005). Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J. Amer. Statist. Assoc., 100, 410-428.
-
(2005)
J. Amer. Statist. Assoc.
, vol.100
, pp. 410-428
-
-
Cook, R.D.1
Ni, L.2
-
20
-
-
0001659464
-
Discussion of "Sliced inverse regression for dimension reduction"
-
Cook, R.D. & Weisberg, S. (1991). Discussion of "Sliced inverse regression for dimension reduction". J. Amer. Statist. Assoc., 86, 28-33.
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 28-33
-
-
Cook, R.D.1
Weisberg, S.2
-
21
-
-
0041743092
-
A model-free test for reduced rank in multivariate regression
-
Cook, R.D. & Setodji, C.M. (2003). A model-free test for reduced rank in multivariate regression. J. Amer. Statist. Assoc., 98, 340-351.
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 340-351
-
-
Cook, R.D.1
Setodji, C.M.2
-
22
-
-
0012657603
-
Dimension reduction and visualization in discriminant analysis (with discussion)
-
Cook, R. D. & Yin, X. (2001). Dimension reduction and visualization in discriminant analysis (with discussion). Aust. N. Z. J. Stat., 43, 147-199.
-
(2001)
Aust. N. Z. J. Stat.
, vol.43
, pp. 147-199
-
-
Cook, R.D.1
Yin, X.2
-
23
-
-
77952861561
-
Dimension reduction for non-elliptically distributed predictors: second-order moments
-
Dong, Y. & Li, B. (2010). Dimension reduction for non-elliptically distributed predictors: second-order moments. Biometrika, 97, 279-294.
-
(2010)
Biometrika
, vol.97
, pp. 279-294
-
-
Dong, Y.1
Li, B.2
-
24
-
-
0007188052
-
A characterization of spherical distributions
-
Eaton, M.L. (1986). A characterization of spherical distributions. J. Multivariate Anal., 34, 439-446.
-
(1986)
J. Multivariate Anal.
, vol.34
, pp. 439-446
-
-
Eaton, M.L.1
-
25
-
-
3242708140
-
Least Angle Regression
-
Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004). Least Angle Regression. Ann. Statist., 32, 407-499.
-
(2004)
Ann. Statist.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
26
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96, 1348-1360.
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
27
-
-
53849086824
-
Sure independence screening for ultrahigh dimensional feature space (with discussion)
-
Fan, J. & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Stat. Soc. Ser. B, 70, 849-911.
-
(2008)
J. R. Stat. Soc. Ser. B
, vol.70
, pp. 849-911
-
-
Fan, J.1
Lv, J.2
-
28
-
-
0001400429
-
Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems
-
Fan, J., Yao, Q. & Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika, 83, 189-196.
-
(1996)
Biometrika
, vol.83
, pp. 189-196
-
-
Fan, J.1
Yao, Q.2
Tong, H.3
-
29
-
-
0036822251
-
Dimension reduction based on canonical correlation
-
Fung, W.K., He, X., Liu, L. & Shi, P. (2002). Dimension reduction based on canonical correlation. Statist. Sinica, 12, 1093-1113.
-
(2002)
Statist. Sinica
, vol.12
, pp. 1093-1113
-
-
Fung, W.K.1
He, X.2
Liu, L.3
Shi, P.4
-
30
-
-
0041753016
-
On almost linearity of low dimensional projection from high dimensional data
-
Hall, P. & Li, K.C. (1993). On almost linearity of low dimensional projection from high dimensional data. Ann. Statist., 21, 867-889.
-
(1993)
Ann. Statist.
, vol.21
, pp. 867-889
-
-
Hall, P.1
Li, K.C.2
-
32
-
-
25844518492
-
A paradox concerning nuisance parameters and projected estimating functions
-
Henmi, M. & Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions. Biometrika, 91, 929-941.
-
(2004)
Biometrika
, vol.91
, pp. 929-941
-
-
Henmi, M.1
Eguchi, S.2
-
33
-
-
29544445970
-
Dimension reduction in nonparametric kernel discriminant analysis
-
Hernández, A. & Velilla, S. (2005). Dimension reduction in nonparametric kernel discriminant analysis. J. Comput. Graph. Statist., 14, 847-866.
-
(2005)
J. Comput. Graph. Statist.
, vol.14
, pp. 847-866
-
-
Hernández, A.1
Velilla, S.2
-
34
-
-
0033423359
-
Nearest neighbor inverse regression
-
Hsing, T. (1999). Nearest neighbor inverse regression. Ann. Statist., 27, 697-731.
-
(1999)
Ann. Statist.
, vol.27
, pp. 697-731
-
-
Hsing, T.1
-
35
-
-
0003187405
-
Semiparametric least squares (SLS) and weighted SLS estimation of single-index models
-
Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics, 58, 71-120.
-
(1993)
J. Econometrics
, vol.58
, pp. 71-120
-
-
Ichimura, H.1
-
36
-
-
68649110509
-
Dimension reduction for non-elliptically distributed predictors
-
Li, B. & Dong, Y. (2009). Dimension reduction for non-elliptically distributed predictors. Ann. Statist., 37, 1272-1298.
-
(2009)
Ann. Statist.
, vol.37
, pp. 1272-1298
-
-
Li, B.1
Dong, Y.2
-
37
-
-
35348849313
-
On directional regression for dimension reduction
-
Li, B. & Wang, S. (2007). On directional regression for dimension reduction. J. Amer. Statist. Assoc., 102, 997-1008.
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, pp. 997-1008
-
-
Li, B.1
Wang, S.2
-
38
-
-
54949122171
-
On a projective resampling method for dimension reduction with multivariate responses
-
Li, B., Wen, S.Q. & Zhu, L.X. (2008). On a projective resampling method for dimension reduction with multivariate responses. J. Amer. Statist. Assoc., 103, 1177-1186.
-
(2008)
J. Amer. Statist. Assoc.
, vol.103
, pp. 1177-1186
-
-
Li, B.1
Wen, S.Q.2
Zhu, L.X.3
-
39
-
-
26444566340
-
Contour regression: a general approach to dimension reduction
-
Li, B., Zha, H. & Chiaromonte, F. (2005). Contour regression: a general approach to dimension reduction. Ann. Statist., 33, 1580-1616.
-
(2005)
Ann. Statist.
, vol.33
, pp. 1580-1616
-
-
Li, B.1
Zha, H.2
Chiaromonte, F.3
-
40
-
-
77949541403
-
Confidence region for the direction in semi-parametric regressions
-
Li, G., Zhu, L.P. & Zhu, L.X. (2010). Confidence region for the direction in semi-parametric regressions. J. Multivariate Anal., 101, 1364-1377.
-
(2010)
J. Multivariate Anal.
, vol.101
, pp. 1364-1377
-
-
Li, G.1
Zhu, L.P.2
Zhu, L.X.3
-
41
-
-
34548540582
-
Partial inverse regression
-
Li, L.X., Cook, R.D. & Tsai, C.L. (2007). Partial inverse regression. Biometrika, 94, 615-625.
-
(2007)
Biometrika
, vol.94
, pp. 615-625
-
-
Li, L.X.1
Cook, R.D.2
Tsai, C.L.3
-
42
-
-
84945116550
-
Sliced inverse regression for dimension reduction
-
Li, K.C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc., 86, 316-327.
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 316-327
-
-
Li, K.C.1
-
43
-
-
84950441056
-
On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma
-
Li, K.C. (1992). On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma. J. Amer. Statist. Assoc., 87, 1025-1039.
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 1025-1039
-
-
Li, K.C.1
-
44
-
-
0037363287
-
Dimension reduction for multivariate response data
-
Li, K.C., Aragon, Y., Shedden, K. & Agnan, C.T. (2003). Dimension reduction for multivariate response data. J. Amer. Statist. Assoc., 98, 99-109.
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 99-109
-
-
Li, K.C.1
Aragon, Y.2
Shedden, K.3
Agnan, C.T.4
-
45
-
-
0001017987
-
Regression analysis under link violation
-
Li, K.C. & Duan, N. (1991). Regression analysis under link violation. Ann. Statist., 17, 1009-1052.
-
(1991)
Ann. Statist.
, vol.17
, pp. 1009-1052
-
-
Li, K.C.1
Duan, N.2
-
46
-
-
73149086049
-
Contour projected dimension reduction
-
Luo, R., Wang, H. & Tsai, C.L. (2009). Contour projected dimension reduction. Ann. Statist., 37, 3743-3778.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3743-3778
-
-
Luo, R.1
Wang, H.2
Tsai, C.L.3
-
47
-
-
78650356258
-
Explicit semiparametric estimators for generalized linear latent variable models
-
Ma, Y. & Genton, M.G. (2010). Explicit semiparametric estimators for generalized linear latent variable models. J. R. Stat. Soc. Ser. B, 72, 475-495.
-
(2010)
J. R. Stat. Soc. Ser. B
, vol.72
, pp. 475-495
-
-
Ma, Y.1
Genton, M.G.2
-
48
-
-
84862890233
-
A semiparametric approach to dimension reduction
-
Ma, Y. & Zhu, L. (2012a). A semiparametric approach to dimension reduction. J. Amer. Statist. Assoc., 107(497), 168-179.
-
(2012)
J. Amer. Statist. Assoc.
, vol.107
, Issue.497
, pp. 168-179
-
-
Ma, Y.1
Zhu, L.2
-
49
-
-
84875665192
-
Efficient estimation in sufficient dimension reduction
-
Ma, Y. & Zhu, L. (2012b). Efficient estimation in sufficient dimension reduction, Ann. Statist ., http://www.stat.tamu.edu/ma/papers/mz5.pdf.
-
(2012)
Ann. Statist
-
-
Ma, Y.1
Zhu, L.2
-
50
-
-
84875653113
-
Efficiency loss caused by linearity condition in dimension reduction
-
Ma, Y. & Zhu, L. (2012c). Efficiency loss caused by linearity condition in dimension reduction, Biometrika, http://www.stat.tamu.edu/ma/papers/mz4.pdf.
-
(2012)
Biometrika
-
-
Ma, Y.1
Zhu, L.2
-
51
-
-
0034354146
-
Partial least squares estimator for single-index models
-
Naik, P. & Tsai, C.L. (2000). Partial least squares estimator for single-index models. J. R. Stat. Soc. Ser. B, 62, 763-771.
-
(2000)
J. R. Stat. Soc. Ser. B
, vol.62
, pp. 763-771
-
-
Naik, P.1
Tsai, C.L.2
-
52
-
-
24344486105
-
Influence functions for sliced inverse regression
-
Prendergast, L.A. (2005). Influence functions for sliced inverse regression. Scand. J. Statist., 32, 385-404.
-
(2005)
Scand. J. Statist.
, vol.32
, pp. 385-404
-
-
Prendergast, L.A.1
-
53
-
-
34548532944
-
Implications of influence function analysis for sliced inverse regression and sliced average variance estimation
-
Prendergast, L.A. (2007). Implications of influence function analysis for sliced inverse regression and sliced average variance estimation. Biometrika, 94, 585-601.
-
(2007)
Biometrika
, vol.94
, pp. 585-601
-
-
Prendergast, L.A.1
-
54
-
-
23844501459
-
Asymptotics for pooled marginal slicing estimator based on SIR approach
-
Saracco, J. (2005). Asymptotics for pooled marginal slicing estimator based on SIR approach. J. Multivariate Anal., 96, 117-135.
-
(2005)
J. Multivariate Anal.
, vol.96
, pp. 117-135
-
-
Saracco, J.1
-
55
-
-
21344478847
-
Determining the dimensionality in sliced inverse regression
-
Schott, J.R. (1994). Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc., 89, 141-148.
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 141-148
-
-
Schott, J.R.1
-
56
-
-
8344246982
-
K -means inverse regression
-
Setodji, C.M. & Cook, R.D. (2004). K -means inverse regression. Technometrics, 46, 421-429.
-
(2004)
Technometrics
, vol.46
, pp. 421-429
-
-
Setodji, C.M.1
Cook, R.D.2
-
57
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B, 58, 267-288.
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
59
-
-
0032338774
-
Assessing the number of linear components in a general regression problem
-
Velilla, S. (1998). Assessing the number of linear components in a general regression problem. J. Amer. Statist. Assoc., 93, 1088-1098.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1088-1098
-
-
Velilla, S.1
-
60
-
-
49549101089
-
Sliced regression for dimension reduction
-
Wang, H. & Xia, Y. (2008). Sliced regression for dimension reduction. J. Amer. Statist. Assoc., 103, 811-821.
-
(2008)
J. Amer. Statist. Assoc.
, vol.103
, pp. 811-821
-
-
Wang, H.1
Xia, Y.2
-
61
-
-
49549110291
-
A constructive approach to the estimation of dimension reduction directions
-
Xia, Y. (2007). A constructive approach to the estimation of dimension reduction directions. Ann. Statist., 35, 2654-2690.
-
(2007)
Ann. Statist.
, vol.35
, pp. 2654-2690
-
-
Xia, Y.1
-
62
-
-
0036428498
-
An adaptive estimation of dimension reduction space (with discussion)
-
Xia, Y., Tong, H., Li, W.K. & Zhu, L.X. (2002). An adaptive estimation of dimension reduction space (with discussion). J. R. Stat. Soc. Ser. B, 64, 363-410.
-
(2002)
J. R. Stat. Soc. Ser. B
, vol.64
, pp. 363-410
-
-
Xia, Y.1
Tong, H.2
Li, W.K.3
Zhu, L.X.4
-
63
-
-
1142265318
-
Using the bootstrap to select one of a new class of dimension reduction methods
-
Ye, Z. & Weiss, R.E. (2003). Using the bootstrap to select one of a new class of dimension reduction methods. J. Amer. Statist. Assoc., 98, 968-979.
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 968-979
-
-
Ye, Z.1
Weiss, R.E.2
-
64
-
-
84875658794
-
Sufficient dimension reduction in regression
-
Eds. T.T. Cai & X. Shen, Chapter 9. New Jersey : World Scientific.
-
Yin, X. (2010). Sufficient dimension reduction in regression. In The Analysis of High-dimensional Data, Eds. T.T. Cai & X. Shen, Chapter 9. New Jersey : World Scientific.
-
(2010)
The Analysis of High-dimensional Data
-
-
Yin, X.1
-
65
-
-
33744977260
-
Moment based dimension reduction for multivariate response regression
-
Yin, X. & Bura, E. (2006). Moment based dimension reduction for multivariate response regression. J. Statist. Plann. Inference, 136, 3675-3688.
-
(2006)
J. Statist. Plann. Inference
, vol.136
, pp. 3675-3688
-
-
Yin, X.1
Bura, E.2
-
66
-
-
0036432553
-
Dimension reduction for the conditional kth moment in regression
-
Yin, X. & Cook, R.D. (2002). Dimension reduction for the conditional kth moment in regression. J. R. Stat. Soc. Ser. B, 64, 159-175.
-
(2002)
J. R. Stat. Soc. Ser. B
, vol.64
, pp. 159-175
-
-
Yin, X.1
Cook, R.D.2
-
67
-
-
21244477445
-
Direction estimation in single-index regressions
-
Yin, X. & Cook, R.D. (2005). Direction estimation in single-index regressions. Biometrika, 92, 371-384.
-
(2005)
Biometrika
, vol.92
, pp. 371-384
-
-
Yin, X.1
Cook, R.D.2
-
68
-
-
48749099148
-
Successive direction extraction for estimating the central subspace in a multiple-index regression
-
Yin, X., Li, B. & Cook, R.D. (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression. J. Multivar. Anal., 99, 1733-1757.
-
(2008)
J. Multivar. Anal.
, vol.99
, pp. 1733-1757
-
-
Yin, X.1
Li, B.2
Cook, R.D.3
-
69
-
-
44849124825
-
Determining the dimension of the central subspace and central mean subspace
-
Zeng, P. (2008). Determining the dimension of the central subspace and central mean subspace. Biometrika, 95, 469-479.
-
(2008)
Biometrika
, vol.95
, pp. 469-479
-
-
Zeng, P.1
-
70
-
-
70350302653
-
An integral transform method for estimating the central mean and central subspaces
-
Zeng, P. & Zhu, Y. (2010). An integral transform method for estimating the central mean and central subspaces. J. Multivariate Anal., 101, 271-290.
-
(2010)
J. Multivariate Anal.
, vol.101
, pp. 271-290
-
-
Zeng, P.1
Zhu, Y.2
-
71
-
-
84862928752
-
Model-free feature screening for ultrahigh dimensional data
-
Zhu, L.P., Li, L., Li, R. & Zhu, L.X. (2011). Model-free feature screening for ultrahigh dimensional data. J. Amer. Statist. Assoc., 106(496), 1464-1475.
-
(2011)
J. Amer. Statist. Assoc.
, vol.106
, Issue.496
, pp. 1464-1475
-
-
Zhu, L.P.1
Li, L.2
Li, R.3
Zhu, L.X.4
-
72
-
-
77952840920
-
Sufficient dimension reduction through discretization-expectation estimation
-
Zhu, L.P., Wang, T., Zhu, L.X. & Férre, L. (2010a). Sufficient dimension reduction through discretization-expectation estimation. Biometrika, 97, 295-304.
-
(2010)
Biometrika
, vol.97
, pp. 295-304
-
-
Zhu, L.P.1
Wang, T.2
Zhu, L.X.3
Férre, L.4
-
73
-
-
79952806869
-
Dimension reduction for correlated data: an alternating inverse regression
-
Zhu, L.P., Yin, X. & Zhu, L.X. (2010b). Dimension reduction for correlated data: an alternating inverse regression. J. Comput. Graph. Statist., 19, 887-899.
-
(2010)
J. Comput. Graph. Statist.
, vol.19
, pp. 887-899
-
-
Zhu, L.P.1
Yin, X.2
Zhu, L.X.3
-
74
-
-
73149121559
-
A sparse eigen-decomposition estimation in semi-parametric regression
-
Zhu, L.P., Yu, Z. & Zhu, L.X. (2010c) A sparse eigen-decomposition estimation in semi-parametric regression. Comput. Statist. Data Anal., 54, 976-986.
-
(2010)
Comput. Statist. Data Anal.
, vol.54
, pp. 976-986
-
-
Zhu, L.P.1
Yu, Z.2
Zhu, L.X.3
-
75
-
-
33947148667
-
On kernel method for sliced average variance estimation
-
Zhu, L.P. & Zhu, L.X. (2007). On kernel method for sliced average variance estimation. J. Multivariate Anal., 98, 970-991.
-
(2007)
J. Multivariate Anal.
, vol.98
, pp. 970-991
-
-
Zhu, L.P.1
Zhu, L.X.2
-
76
-
-
68149091976
-
Dimension-reduction for conditional variance in regressions
-
Zhu, L.P. & Zhu, L.X. (2009a). Dimension-reduction for conditional variance in regressions. Statist. Sinica, 19, 869-883.
-
(2009)
Statist. Sinica
, vol.19
, pp. 869-883
-
-
Zhu, L.P.1
Zhu, L.X.2
-
77
-
-
62849115699
-
On distribution-weighted partial least squares with diverging number of highly correlated predictors
-
Zhu, L.P. & Zhu, L.X. (2009b). On distribution-weighted partial least squares with diverging number of highly correlated predictors. J. R. Stat. Soc. Ser. B, 71, 525-548.
-
(2009)
J. R. Stat. Soc. Ser. B
, vol.71
, pp. 525-548
-
-
Zhu, L.P.1
Zhu, L.X.2
-
78
-
-
78651340680
-
Dimension reduction in regressions through cumulative slicing estimation
-
Zhu, L.P., Zhu, L.X. & Feng, Z. (2010d). Dimension reduction in regressions through cumulative slicing estimation. J. Amer. Statist. Assoc., 105, 1455-1466.
-
(2010)
J. Amer. Statist. Assoc.
, vol.105
, pp. 1455-1466
-
-
Zhu, L.P.1
Zhu, L.X.2
Feng, Z.3
-
79
-
-
78349288463
-
On dimension reduction in regressions with multivariate responses
-
Zhu, L.P., Zhu, L.X. & Wen, S.Q. (2010e). On dimension reduction in regressions with multivariate responses. Statist. Sinica, 20, 1291-1307.
-
(2010)
Statist. Sinica
, vol.20
, pp. 1291-1307
-
-
Zhu, L.P.1
Zhu, L.X.2
Wen, S.Q.3
-
80
-
-
0038153750
-
Asymptotics for the kernel estimates of sliced inverse regression
-
Zhu, L.X. & Fang, K.T. (1996). Asymptotics for the kernel estimates of sliced inverse regression. Ann. Statist., 24, 1053-1067.
-
(1996)
Ann. Statist.
, vol.24
, pp. 1053-1067
-
-
Zhu, L.X.1
Fang, K.T.2
-
81
-
-
33745658690
-
On sliced inverse regression with high-dimensional covariates
-
Zhu, L.X., Miao, B. & Peng, H. (2006). On sliced inverse regression with high-dimensional covariates. J. Amer. Statist. Assoc., 101, 630-643.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 630-643
-
-
Zhu, L.X.1
Miao, B.2
Peng, H.3
-
82
-
-
33751014301
-
On hybrid methods of inverse regression based algorithms
-
Zhu, L.X., Ohtaki, M. & Li, Y.X. (2007). On hybrid methods of inverse regression based algorithms. Comput. Statist. Data Anal., 51, 2621-2635.
-
(2007)
Comput. Statist. Data Anal.
, vol.51
, pp. 2621-2635
-
-
Zhu, L.X.1
Ohtaki, M.2
Li, Y.X.3
-
83
-
-
33846068932
-
Fourier methods for estimating the central subspace and the central mean subspace in regression
-
Zhu, Y. & Zeng, P. (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression. J. Amer. Statist. Assoc., 101, 1638-1651.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1638-1651
-
-
Zhu, Y.1
Zeng, P.2
-
84
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc., 101, 1418-1429.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|