메뉴 건너뛰기




Volumn 98, Issue 5, 2007, Pages 970-991

On kernel method for sliced average variance estimation

Author keywords

Asymptotic normality; Bandwidth selection; Dimension reduction; Kernel estimation; Sliced average variance estimation; Sliced inverse regression; Slicing estimation

Indexed keywords


EID: 33947148667     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2006.11.005     Document Type: Article
Times cited : (49)

References (27)
  • 1
    • 0035532137 scopus 로고    scopus 로고
    • Estimating the structural dimension of regressions via parametric inverse regression
    • Bura E., and Cook R.D. Estimating the structural dimension of regressions via parametric inverse regression. J. Roy. Statist. Soc. B. 63 (2001) 393-410
    • (2001) J. Roy. Statist. Soc. B. , vol.63 , pp. 393-410
    • Bura, E.1    Cook, R.D.2
  • 3
    • 21344476749 scopus 로고
    • On the interpretation of regression plots
    • Cook R.D. On the interpretation of regression plots. J. Amer. Statist. Assoc. 89 (1994) 177-189
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 177-189
    • Cook, R.D.1
  • 5
    • 0040753656 scopus 로고    scopus 로고
    • SAVE: a method for dimension reduction and graphics in regression
    • Cook R.D. SAVE: a method for dimension reduction and graphics in regression. Comm. Statist. Theory Methods 29 (2000) 2109-2121
    • (2000) Comm. Statist. Theory Methods , vol.29 , pp. 2109-2121
    • Cook, R.D.1
  • 6
    • 2242425461 scopus 로고    scopus 로고
    • Identifying regression outliers and mixtures graphically
    • Cook R.D., and Critchley F. Identifying regression outliers and mixtures graphically. J. Amer. Statist. Assoc. 95 (2000) 781-794
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 781-794
    • Cook, R.D.1    Critchley, F.2
  • 7
    • 0001659464 scopus 로고
    • Discussion to "Sliced inverse regression for dimension reduction"
    • Cook R.D., and Weisberg S. Discussion to "Sliced inverse regression for dimension reduction". J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Cook, R.D.1    Weisberg, S.2
  • 8
    • 0020998928 scopus 로고
    • A misuse of ridge regression in the calibration of near infrared reflectance instruments
    • Fearn T. A misuse of ridge regression in the calibration of near infrared reflectance instruments. Appl. Statist. 32 (1983) 73-79
    • (1983) Appl. Statist. , vol.32 , pp. 73-79
    • Fearn, T.1
  • 9
    • 0032337534 scopus 로고    scopus 로고
    • Determining the dimension in sliced inverse regression and related methods
    • Ferre L. Determining the dimension in sliced inverse regression and related methods. J. Amer. Statist. Assoc. 93 (1998) 132-140
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 132-140
    • Ferre, L.1
  • 10
    • 21344496537 scopus 로고
    • Comparing nonparametric versus parametric regression fits
    • Härdle W., and Mammen E. Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 (1993) 1926-1947
    • (1993) Ann. Statist. , vol.21 , pp. 1926-1947
    • Härdle, W.1    Mammen, E.2
  • 11
    • 0000906634 scopus 로고
    • An asymptotic theory for sliced inverse regression
    • Hsing T., and Carroll R.J. An asymptotic theory for sliced inverse regression. Ann. Statist. 20 (1992) 1040-1061
    • (1992) Ann. Statist. , vol.20 , pp. 1040-1061
    • Hsing, T.1    Carroll, R.J.2
  • 12
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • Li K.C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.C.1
  • 13
    • 26444566340 scopus 로고    scopus 로고
    • Contour regression: a general approach to dimension reduction
    • Li B., Zha H., and Chiaromonte F. Contour regression: a general approach to dimension reduction. Ann. Statist. 33 (2005) 1580-1616
    • (2005) Ann. Statist. , vol.33 , pp. 1580-1616
    • Li, B.1    Zha, H.2    Chiaromonte, F.3
  • 14
    • 33947161824 scopus 로고    scopus 로고
    • Y.X. Li, L.X. Zhu, When is sliced average variance estimation convergent? Technical Report, Department of Statistics and Actuarial Science, The University of Hong Kong. Hong Kong, 2004.
  • 15
    • 21344478847 scopus 로고
    • Determining the dimensionality in sliced inverse regression
    • Schott J.R. Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc. 89 (1994) 141-148
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 141-148
    • Schott, J.R.1
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Math. Statist. 30 (1978) 461-464
    • (1978) Ann. Math. Statist. , vol.30 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 23744440060 scopus 로고    scopus 로고
    • Nonparametric checks for single-index models
    • Stute W., and Zhu L.X. Nonparametric checks for single-index models. Ann. Statist. 33 (2005) 1048-1083
    • (2005) Ann. Statist. , vol.33 , pp. 1048-1083
    • Stute, W.1    Zhu, L.X.2
  • 18
    • 0032338774 scopus 로고    scopus 로고
    • Assessing the number of linear components in a general regression problem
    • Velilla S. Assessing the number of linear components in a general regression problem. J. Amer. Statist. Assoc. 93 (1998) 1088-1098
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1088-1098
    • Velilla, S.1
  • 19
    • 1142265318 scopus 로고    scopus 로고
    • Using the bootstrap to select one of a new class of dimension reduction methods
    • Ye Z., and Weiss R. Using the bootstrap to select one of a new class of dimension reduction methods. J. Amer. Statist. Assoc. 98 (2003) 968-979
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 968-979
    • Ye, Z.1    Weiss, R.2
  • 20
    • 46149133538 scopus 로고
    • On detection of the number of signals in presence of white noise
    • Zhao L.C., Krishnaiah P.R., and Bai Z.D. On detection of the number of signals in presence of white noise. J. Multivariate Anal. 20 (1986) 1-25
    • (1986) J. Multivariate Anal. , vol.20 , pp. 1-25
    • Zhao, L.C.1    Krishnaiah, P.R.2    Bai, Z.D.3
  • 21
    • 46149130406 scopus 로고
    • On detection of the number of signals when the noise covariance matrix is arbitrary
    • Zhao L.C., Krishnaiah P.R., and Bai Z.D. On detection of the number of signals when the noise covariance matrix is arbitrary. J. Multivariate Anal. 20 (1986) 26-49
    • (1986) J. Multivariate Anal. , vol.20 , pp. 26-49
    • Zhao, L.C.1    Krishnaiah, P.R.2    Bai, Z.D.3
  • 22
    • 0038383116 scopus 로고    scopus 로고
    • Model checking of dimensional-reduction type for regression
    • Zhu L.X. Model checking of dimensional-reduction type for regression. Statist. Sin. 13 (2003) 283-296
    • (2003) Statist. Sin. , vol.13 , pp. 283-296
    • Zhu, L.X.1
  • 23
    • 0038153750 scopus 로고    scopus 로고
    • Asymptotics for kernel estimate of sliced inverse regression
    • Zhu L.X., and Fang K.T. Asymptotics for kernel estimate of sliced inverse regression. Ann. Statist. 24 (1996) 1053-1068
    • (1996) Ann. Statist. , vol.24 , pp. 1053-1068
    • Zhu, L.X.1    Fang, K.T.2
  • 24
    • 0001601159 scopus 로고
    • Asymptotics of sliced inverse regression
    • Zhu L.X., and Ng K.W. Asymptotics of sliced inverse regression. Statist. Sin. 5 (1995) 727-736
    • (1995) Statist. Sin. , vol.5 , pp. 727-736
    • Zhu, L.X.1    Ng, K.W.2
  • 25
    • 33745658690 scopus 로고    scopus 로고
    • Sliced inverse regression with high-dimensional covariates
    • Zhu L.X., Miao B.Q., and Peng H. Sliced inverse regression with high-dimensional covariates. J. Amer. Statist. Assoc. 101 (2006) 630-643
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 630-643
    • Zhu, L.X.1    Miao, B.Q.2    Peng, H.3
  • 26
    • 0141796397 scopus 로고    scopus 로고
    • Checking the adequacy of a partial linear model
    • Zhu L.X., and Ng K.W. Checking the adequacy of a partial linear model. Statist. Sin. 13 (2003) 763-781
    • (2003) Statist. Sin. , vol.13 , pp. 763-781
    • Zhu, L.X.1    Ng, K.W.2
  • 27
    • 33751014301 scopus 로고    scopus 로고
    • L.X. Zhu, M. Ohtaki, Y.X. Li, Hybrid methods of inverse regression based algorithms, Comp. Statist. Data. Anal. 51 (2007) 2621-2635.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.