-
1
-
-
0442280663
-
Extending sliced inverse regression: The weighted chi-squared test
-
Bura E., and Cook R.D. Extending sliced inverse regression: The weighted chi-squared test. J. Amer. Statist. Assoc. 96 (2001) 996-1003
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 996-1003
-
-
Bura, E.1
Cook, R.D.2
-
2
-
-
0032367227
-
Can SIR be as popular as multiple linear regression?
-
Chen C.H., and Li K.C. Can SIR be as popular as multiple linear regression?. Statist. Sinica 8 (1998) 289-316
-
(1998)
Statist. Sinica
, vol.8
, pp. 289-316
-
-
Chen, C.H.1
Li, K.C.2
-
4
-
-
0036284461
-
Dimension reduction for conditional mean in regression
-
Cook R.D., and Li B. Dimension reduction for conditional mean in regression. Ann. Statist. 30 (2002) 455-474
-
(2002)
Ann. Statist.
, vol.30
, pp. 455-474
-
-
Cook, R.D.1
Li, B.2
-
5
-
-
21644461782
-
Determining the dimension of iterative Hessian transformation
-
Cook R.D., and Li B. Determining the dimension of iterative Hessian transformation. Ann. Statist. 32 (2004) 2501-2531
-
(2004)
Ann. Statist.
, vol.32
, pp. 2501-2531
-
-
Cook, R.D.1
Li, B.2
-
6
-
-
20444454672
-
Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
-
Cook R.D., and Ni L. Sufficient dimension reduction via inverse regression: A minimum discrepancy approach. J. Amer. Statist. Assoc. 100 (2005) 410-428
-
(2005)
J. Amer. Statist. Assoc.
, vol.100
, pp. 410-428
-
-
Cook, R.D.1
Ni, L.2
-
7
-
-
0001659464
-
Discussion to Sliced inverse regression for dimension reduction
-
Cook R.D., and Weisberg S. Discussion to Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 (1991) 316-342
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 316-342
-
-
Cook, R.D.1
Weisberg, S.2
-
9
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J., and Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 (2001) 1348-1360
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
10
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
Fan J., and Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 (2004) 928-961
-
(2004)
Ann. Statist.
, vol.32
, pp. 928-961
-
-
Fan, J.1
Peng, H.2
-
11
-
-
0036822251
-
Dimension reduction based on canonical correlation
-
Fung K.F., He X., Liu L., and Shi P. Dimension reduction based on canonical correlation. Statist. Sinica 12 (2002) 1093-1113
-
(2002)
Statist. Sinica
, vol.12
, pp. 1093-1113
-
-
Fung, K.F.1
He, X.2
Liu, L.3
Shi, P.4
-
12
-
-
21844523306
-
On the asymptotics of constraint M-estimation
-
Geyer C. On the asymptotics of constraint M-estimation. Ann. Statist. 22 (1994) 1993-2010
-
(1994)
Ann. Statist.
, vol.22
, pp. 1993-2010
-
-
Geyer, C.1
-
13
-
-
0034287156
-
Asymptotics for Lasso-type estimators
-
Knight K., and Fu W. Asymptotics for Lasso-type estimators. Ann. Statist. 28 (2000) 1356-1378
-
(2000)
Ann. Statist.
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
Fu, W.2
-
15
-
-
35348849313
-
On directional regression for dimension reduction
-
Li B., and Wang S.L. On directional regression for dimension reduction. J. Amer. Statist. Assoc. 102 (2007) 997-1008
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, pp. 997-1008
-
-
Li, B.1
Wang, S.L.2
-
16
-
-
26444566340
-
Contour regression: A general approach to dimension reduction
-
Li B., Zha H., and Chiaromonte F. Contour regression: A general approach to dimension reduction. Ann. Statist. 33 (2005) 1580-1616
-
(2005)
Ann. Statist.
, vol.33
, pp. 1580-1616
-
-
Li, B.1
Zha, H.2
Chiaromonte, F.3
-
17
-
-
84945116550
-
Sliced inverse regression for dimension reduction (with discussion)
-
Li K.C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 (1991) 316-342
-
(1991)
J. Amer. Statist. Assoc.
, vol.86
, pp. 316-342
-
-
Li, K.C.1
-
18
-
-
84950441056
-
On principal Hessian directions for data visuallization and dimension reduction: Another application of Stein's lemma
-
Li K.C. On principal Hessian directions for data visuallization and dimension reduction: Another application of Stein's lemma. J. Amer. Statist. Assoc. 87 (1992) 1025-1039
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 1025-1039
-
-
Li, K.C.1
-
19
-
-
73149086049
-
Contour projected dimension reduction
-
in press
-
Luo, R., Wang, H., Tsai, C.L., 2009. Contour projected dimension reduction, Ann. Statist. (in press)
-
(2009)
Ann. Statist
-
-
Luo, R.1
Wang, H.2
Tsai, C.L.3
-
20
-
-
1542637237
-
Interactive tree-structured regression via principal Hessian directions
-
Li K.C., Lue H.H., and Chen C.H. Interactive tree-structured regression via principal Hessian directions. J. Amer. Statist. Assoc. 95 (2000) 547-560
-
(2000)
J. Amer. Statist. Assoc.
, vol.95
, pp. 547-560
-
-
Li, K.C.1
Lue, H.H.2
Chen, C.H.3
-
21
-
-
21344478847
-
Determining the dimensionality in sliced inverse regression
-
Schott J.R. Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc. 89 (1994) 141-148
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 141-148
-
-
Schott, J.R.1
-
22
-
-
0032338774
-
Assessing the number of linear components in a general regression problem
-
Velilla S. Assessing the number of linear components in a general regression problem. J. Amer. Statist. Assoc. 93 (1998) 1088-1098
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1088-1098
-
-
Velilla, S.1
-
23
-
-
34548536572
-
Tuning parameter selectors for the smoothly clipped absolute deviation method
-
Wang H., Li R., and Tsai C.L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 (2007) 553-568
-
(2007)
Biometrika
, vol.94
, pp. 553-568
-
-
Wang, H.1
Li, R.2
Tsai, C.L.3
-
24
-
-
35348879976
-
Unified lasso estimation via least square approximation
-
Wang H., and Leng C. Unified lasso estimation via least square approximation. J. Amer. Statist. Assoc. 102 (2007) 1039-1048
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, pp. 1039-1048
-
-
Wang, H.1
Leng, C.2
-
26
-
-
1142265318
-
Using the bootstrap to select one of a new class of dimension reduction methods
-
Ye Z., and Weiss. Using the bootstrap to select one of a new class of dimension reduction methods. J. Amer. Statist. Assoc. 98 (2003) 968-979
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 968-979
-
-
Ye, Z.1
Weiss2
-
27
-
-
48749099148
-
Successive direction extraction for estimating the central subspace in a multiple-index regression
-
Yin X., Li B., and Cook R.D. Successive direction extraction for estimating the central subspace in a multiple-index regression. J. Multivariate Anal. 99 (2008) 1733-1757
-
(2008)
J. Multivariate Anal.
, vol.99
, pp. 1733-1757
-
-
Yin, X.1
Li, B.2
Cook, R.D.3
-
28
-
-
33947148667
-
On kernel method for sliced average variance estimation
-
Zhu L.P., and Zhu L.X. On kernel method for sliced average variance estimation. J. Multivariate Anal. 98 (2007) 970-991
-
(2007)
J. Multivariate Anal.
, vol.98
, pp. 970-991
-
-
Zhu, L.P.1
Zhu, L.X.2
-
29
-
-
0038153750
-
Asymptotics for the kernel estimates of sliced inverse regression
-
Zhu L.X., and Fang K.T. Asymptotics for the kernel estimates of sliced inverse regression. Ann. Statist. 24 (1996) 1053-1067
-
(1996)
Ann. Statist.
, vol.24
, pp. 1053-1067
-
-
Zhu, L.X.1
Fang, K.T.2
-
30
-
-
33745658690
-
Sliced inverse regression with large dimensional covariates
-
Zhu L.X., Miao B.Q., and Peng H. Sliced inverse regression with large dimensional covariates. J. Amer. Statist. Assoc. 101 (2006) 630-643
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 630-643
-
-
Zhu, L.X.1
Miao, B.Q.2
Peng, H.3
-
31
-
-
0001601159
-
Asymptotics for sliced inverse regression
-
Zhu L.X., and Ng K.W. Asymptotics for sliced inverse regression. Statist. Sinica 5 (1995) 727-736
-
(1995)
Statist. Sinica
, vol.5
, pp. 727-736
-
-
Zhu, L.X.1
Ng, K.W.2
-
32
-
-
33846068932
-
Fourier methods for estimating the central subspace and the central mean subspace in regression
-
Zhu Y., and Zeng P. Fourier methods for estimating the central subspace and the central mean subspace in regression. J. Amer. Statist. Assoc. 101 (2006) 1638-1651
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1638-1651
-
-
Zhu, Y.1
Zeng, P.2
-
33
-
-
44849124825
-
Determining the dimension of the central subspace and central mean subspace
-
Zeng P. Determining the dimension of the central subspace and central mean subspace. Biometrika 95 (2008) 469-479
-
(2008)
Biometrika
, vol.95
, pp. 469-479
-
-
Zeng, P.1
-
34
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
Zou H. The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006) 1418-1429
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|