메뉴 건너뛰기




Volumn 54, Issue 4, 2010, Pages 976-986

A sparse eigen-decomposition estimation in semiparametric regression

Author keywords

[No Author keywords available]

Indexed keywords

DATA APPLICATION; DATA-DRIVEN; EIGEN DECOMPOSITION; ESTIMATION PROCEDURES; EXISTING METHOD; KEY ISSUES; REGRESSION FUNCTION; SEMIPARAMETRIC; SEMIPARAMETRIC MODELS; SMALL SAMPLES; STRUCTURAL DIMENSIONS; SUFFICIENT DIMENSION REDUCTION;

EID: 73149121559     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2009.10.011     Document Type: Article
Times cited : (16)

References (35)
  • 1
    • 0442280663 scopus 로고    scopus 로고
    • Extending sliced inverse regression: The weighted chi-squared test
    • Bura E., and Cook R.D. Extending sliced inverse regression: The weighted chi-squared test. J. Amer. Statist. Assoc. 96 (2001) 996-1003
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 996-1003
    • Bura, E.1    Cook, R.D.2
  • 2
    • 0032367227 scopus 로고    scopus 로고
    • Can SIR be as popular as multiple linear regression?
    • Chen C.H., and Li K.C. Can SIR be as popular as multiple linear regression?. Statist. Sinica 8 (1998) 289-316
    • (1998) Statist. Sinica , vol.8 , pp. 289-316
    • Chen, C.H.1    Li, K.C.2
  • 4
    • 0036284461 scopus 로고    scopus 로고
    • Dimension reduction for conditional mean in regression
    • Cook R.D., and Li B. Dimension reduction for conditional mean in regression. Ann. Statist. 30 (2002) 455-474
    • (2002) Ann. Statist. , vol.30 , pp. 455-474
    • Cook, R.D.1    Li, B.2
  • 5
    • 21644461782 scopus 로고    scopus 로고
    • Determining the dimension of iterative Hessian transformation
    • Cook R.D., and Li B. Determining the dimension of iterative Hessian transformation. Ann. Statist. 32 (2004) 2501-2531
    • (2004) Ann. Statist. , vol.32 , pp. 2501-2531
    • Cook, R.D.1    Li, B.2
  • 6
    • 20444454672 scopus 로고    scopus 로고
    • Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
    • Cook R.D., and Ni L. Sufficient dimension reduction via inverse regression: A minimum discrepancy approach. J. Amer. Statist. Assoc. 100 (2005) 410-428
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 410-428
    • Cook, R.D.1    Ni, L.2
  • 7
    • 0001659464 scopus 로고
    • Discussion to Sliced inverse regression for dimension reduction
    • Cook R.D., and Weisberg S. Discussion to Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Cook, R.D.1    Weisberg, S.2
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J., and Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 (2001) 1348-1360
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan J., and Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 (2004) 928-961
    • (2004) Ann. Statist. , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 11
    • 0036822251 scopus 로고    scopus 로고
    • Dimension reduction based on canonical correlation
    • Fung K.F., He X., Liu L., and Shi P. Dimension reduction based on canonical correlation. Statist. Sinica 12 (2002) 1093-1113
    • (2002) Statist. Sinica , vol.12 , pp. 1093-1113
    • Fung, K.F.1    He, X.2    Liu, L.3    Shi, P.4
  • 12
    • 21844523306 scopus 로고
    • On the asymptotics of constraint M-estimation
    • Geyer C. On the asymptotics of constraint M-estimation. Ann. Statist. 22 (1994) 1993-2010
    • (1994) Ann. Statist. , vol.22 , pp. 1993-2010
    • Geyer, C.1
  • 13
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight K., and Fu W. Asymptotics for Lasso-type estimators. Ann. Statist. 28 (2000) 1356-1378
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 15
    • 35348849313 scopus 로고    scopus 로고
    • On directional regression for dimension reduction
    • Li B., and Wang S.L. On directional regression for dimension reduction. J. Amer. Statist. Assoc. 102 (2007) 997-1008
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 997-1008
    • Li, B.1    Wang, S.L.2
  • 16
    • 26444566340 scopus 로고    scopus 로고
    • Contour regression: A general approach to dimension reduction
    • Li B., Zha H., and Chiaromonte F. Contour regression: A general approach to dimension reduction. Ann. Statist. 33 (2005) 1580-1616
    • (2005) Ann. Statist. , vol.33 , pp. 1580-1616
    • Li, B.1    Zha, H.2    Chiaromonte, F.3
  • 17
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • Li K.C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.C.1
  • 18
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visuallization and dimension reduction: Another application of Stein's lemma
    • Li K.C. On principal Hessian directions for data visuallization and dimension reduction: Another application of Stein's lemma. J. Amer. Statist. Assoc. 87 (1992) 1025-1039
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 1025-1039
    • Li, K.C.1
  • 19
    • 73149086049 scopus 로고    scopus 로고
    • Contour projected dimension reduction
    • in press
    • Luo, R., Wang, H., Tsai, C.L., 2009. Contour projected dimension reduction, Ann. Statist. (in press)
    • (2009) Ann. Statist
    • Luo, R.1    Wang, H.2    Tsai, C.L.3
  • 20
    • 1542637237 scopus 로고    scopus 로고
    • Interactive tree-structured regression via principal Hessian directions
    • Li K.C., Lue H.H., and Chen C.H. Interactive tree-structured regression via principal Hessian directions. J. Amer. Statist. Assoc. 95 (2000) 547-560
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 547-560
    • Li, K.C.1    Lue, H.H.2    Chen, C.H.3
  • 21
    • 21344478847 scopus 로고
    • Determining the dimensionality in sliced inverse regression
    • Schott J.R. Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc. 89 (1994) 141-148
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 141-148
    • Schott, J.R.1
  • 22
    • 0032338774 scopus 로고    scopus 로고
    • Assessing the number of linear components in a general regression problem
    • Velilla S. Assessing the number of linear components in a general regression problem. J. Amer. Statist. Assoc. 93 (1998) 1088-1098
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1088-1098
    • Velilla, S.1
  • 23
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • Wang H., Li R., and Tsai C.L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 (2007) 553-568
    • (2007) Biometrika , vol.94 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.L.3
  • 24
    • 35348879976 scopus 로고    scopus 로고
    • Unified lasso estimation via least square approximation
    • Wang H., and Leng C. Unified lasso estimation via least square approximation. J. Amer. Statist. Assoc. 102 (2007) 1039-1048
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 1039-1048
    • Wang, H.1    Leng, C.2
  • 25
    • 0036428498 scopus 로고    scopus 로고
    • An adaptive estimation of optimal regression subspace
    • Xia Y.C., Tong H., Li W.K., and Zhu L.X. An adaptive estimation of optimal regression subspace. J. Roy. Statist. Soc. B 64 (2002) 363-410
    • (2002) J. Roy. Statist. Soc. B , vol.64 , pp. 363-410
    • Xia, Y.C.1    Tong, H.2    Li, W.K.3    Zhu, L.X.4
  • 26
    • 1142265318 scopus 로고    scopus 로고
    • Using the bootstrap to select one of a new class of dimension reduction methods
    • Ye Z., and Weiss. Using the bootstrap to select one of a new class of dimension reduction methods. J. Amer. Statist. Assoc. 98 (2003) 968-979
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 968-979
    • Ye, Z.1    Weiss2
  • 27
    • 48749099148 scopus 로고    scopus 로고
    • Successive direction extraction for estimating the central subspace in a multiple-index regression
    • Yin X., Li B., and Cook R.D. Successive direction extraction for estimating the central subspace in a multiple-index regression. J. Multivariate Anal. 99 (2008) 1733-1757
    • (2008) J. Multivariate Anal. , vol.99 , pp. 1733-1757
    • Yin, X.1    Li, B.2    Cook, R.D.3
  • 28
    • 33947148667 scopus 로고    scopus 로고
    • On kernel method for sliced average variance estimation
    • Zhu L.P., and Zhu L.X. On kernel method for sliced average variance estimation. J. Multivariate Anal. 98 (2007) 970-991
    • (2007) J. Multivariate Anal. , vol.98 , pp. 970-991
    • Zhu, L.P.1    Zhu, L.X.2
  • 29
    • 0038153750 scopus 로고    scopus 로고
    • Asymptotics for the kernel estimates of sliced inverse regression
    • Zhu L.X., and Fang K.T. Asymptotics for the kernel estimates of sliced inverse regression. Ann. Statist. 24 (1996) 1053-1067
    • (1996) Ann. Statist. , vol.24 , pp. 1053-1067
    • Zhu, L.X.1    Fang, K.T.2
  • 30
    • 33745658690 scopus 로고    scopus 로고
    • Sliced inverse regression with large dimensional covariates
    • Zhu L.X., Miao B.Q., and Peng H. Sliced inverse regression with large dimensional covariates. J. Amer. Statist. Assoc. 101 (2006) 630-643
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 630-643
    • Zhu, L.X.1    Miao, B.Q.2    Peng, H.3
  • 31
    • 0001601159 scopus 로고
    • Asymptotics for sliced inverse regression
    • Zhu L.X., and Ng K.W. Asymptotics for sliced inverse regression. Statist. Sinica 5 (1995) 727-736
    • (1995) Statist. Sinica , vol.5 , pp. 727-736
    • Zhu, L.X.1    Ng, K.W.2
  • 32
    • 33846068932 scopus 로고    scopus 로고
    • Fourier methods for estimating the central subspace and the central mean subspace in regression
    • Zhu Y., and Zeng P. Fourier methods for estimating the central subspace and the central mean subspace in regression. J. Amer. Statist. Assoc. 101 (2006) 1638-1651
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1638-1651
    • Zhu, Y.1    Zeng, P.2
  • 33
    • 44849124825 scopus 로고    scopus 로고
    • Determining the dimension of the central subspace and central mean subspace
    • Zeng P. Determining the dimension of the central subspace and central mean subspace. Biometrika 95 (2008) 469-479
    • (2008) Biometrika , vol.95 , pp. 469-479
    • Zeng, P.1
  • 34
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou H. The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006) 1418-1429
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.