메뉴 건너뛰기




Volumn 51, Issue 5, 2007, Pages 2621-2635

On hybrid methods of inverse regression-based algorithms

Author keywords

Dimension reduction; Hybrid methods; Sliced average variance estimation; Sliced inverse regression

Indexed keywords

ASYMPTOTIC STABILITY; COMPUTER SIMULATION; MATHEMATICAL MODELS; MATRIX ALGEBRA; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 33751014301     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.01.005     Document Type: Article
Times cited : (41)

References (23)
  • 1
    • 0442280663 scopus 로고    scopus 로고
    • Extending sliced inverse regression: the weighted chi-squared test
    • Bura E., and Cook R.D. Extending sliced inverse regression: the weighted chi-squared test. J. Amer. Statist. Assoc. 96 (2001) 996-1003
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 996-1003
    • Bura, E.1    Cook, R.D.2
  • 3
    • 0040753656 scopus 로고    scopus 로고
    • SAVE: a method for dimension reduction and graphics in regression
    • Cook R.D. SAVE: a method for dimension reduction and graphics in regression. Comm. Statist. Theory Methods 29 (2000) 2109-2121
    • (2000) Comm. Statist. Theory Methods , vol.29 , pp. 2109-2121
    • Cook, R.D.1
  • 4
    • 2242425461 scopus 로고    scopus 로고
    • Identifying regression outliers and mixtures graphically
    • Cook R.D., and Critchley F. Identifying regression outliers and mixtures graphically. J. Amer. Statist. Assoc. 95 (2000) 781-794
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 781-794
    • Cook, R.D.1    Critchley, F.2
  • 5
    • 0001659464 scopus 로고
    • Discussion of "Sliced inverse regression for dimension reduction"
    • Cook R.D., and Weisberg S. Discussion of "Sliced inverse regression for dimension reduction". J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Cook, R.D.1    Weisberg, S.2
  • 6
    • 0032337534 scopus 로고    scopus 로고
    • Determining the dimension in sliced inverse regression and related methods
    • Ferré L. Determining the dimension in sliced inverse regression and related methods. J. Amer. Statist. Assoc. 93 (1998) 132-140
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 132-140
    • Ferré, L.1
  • 10
    • 21144469983 scopus 로고
    • Optimal smoothing in single-index models
    • Härdle W., Hall P., and Ichimura H. Optimal smoothing in single-index models. Ann. Statist. 21 (1993) 157-178
    • (1993) Ann. Statist. , vol.21 , pp. 157-178
    • Härdle, W.1    Hall, P.2    Ichimura, H.3
  • 11
    • 0006973110 scopus 로고
    • Simultaneous equations and canonical correlation theory
    • Hooper J. Simultaneous equations and canonical correlation theory. Econometrica 27 (1959) 245-256
    • (1959) Econometrica , vol.27 , pp. 245-256
    • Hooper, J.1
  • 12
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • Li K.C. Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 (1991) 316-342
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.C.1
  • 13
    • 33750994392 scopus 로고    scopus 로고
    • Li, Y.X., Zhu, L.X., 2004. When is sliced average variance estimates convergent? Technical Report, Department of Statistics and Actuarial Science, The University of Hong Kong.
  • 14
    • 21344478847 scopus 로고
    • Determining the dimensionality in sliced inverse regression
    • Schott J.R. Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc. 89 (1994) 141-148
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 141-148
    • Schott, J.R.1
  • 15
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Math. Statist. 30 (1978) 461-464
    • (1978) Ann. Math. Statist. , vol.30 , pp. 461-464
    • Schwarz, G.1
  • 16
    • 0032338774 scopus 로고    scopus 로고
    • Assessing the number of linear components in a general regression problem
    • Velilla S. Assessing the number of linear components in a general regression problem. J. Amer. Statist. Assoc. 93 (1998) 1088-1098
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1088-1098
    • Velilla, S.1
  • 17
    • 1142265318 scopus 로고    scopus 로고
    • Using the bootstrap to select one of a new class of dimension reduction methods
    • Ye Z.S., and Weiss R.E. Using the bootstrap to select one of a new class of dimension reduction methods. J. Amer. Statist. Assoc. 98 (2003) 968-979
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 968-979
    • Ye, Z.S.1    Weiss, R.E.2
  • 18
    • 46149133538 scopus 로고    scopus 로고
    • Zhao, L. C., Krishnaiah, P. R., Bai, Z. D., 1986a. On detection of the number of signals in presence of white noise. J. Multiv. Anal. 20, 1-25.
  • 19
    • 46149130406 scopus 로고    scopus 로고
    • Zhao, L. C., Krishnaiah, P. R., Bai, Z. D., 1986b. On detection of the number of signals when the noise covariance matrix is arbitrary. J. Multiv. Anal. 20, 26-49.
  • 20
    • 0038153750 scopus 로고    scopus 로고
    • Asymptotics for the kernel estimates of sliced inverse regression
    • Zhu L.X., and Fang K.T. Asymptotics for the kernel estimates of sliced inverse regression. Ann. Statist. 24 (1996) 1053-1067
    • (1996) Ann. Statist. , vol.24 , pp. 1053-1067
    • Zhu, L.X.1    Fang, K.T.2
  • 21
    • 0001601159 scopus 로고
    • Asymptotics for sliced inverse regression
    • Zhu L.X., and Ng K.W. Asymptotics for sliced inverse regression. Statist. Sinica 5 (1995) 727-736
    • (1995) Statist. Sinica , vol.5 , pp. 727-736
    • Zhu, L.X.1    Ng, K.W.2
  • 22
    • 33751020019 scopus 로고    scopus 로고
    • Zhu, L.X., Zhu, L.P., 2005. On kernel method for sliced average variance estimation. Technical Report, Department of Statistics, East China Normal University.
  • 23
    • 33751019724 scopus 로고    scopus 로고
    • Zhu, L.X., Peng, H., Miao, B., 2005. On sliced inverse regression with high-dimensional covariates. J. Amer. Statist. Assoc., to appear.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.