메뉴 건너뛰기




Volumn 4723 LNCS, Issue , 2007, Pages 184-194

Making time: Pseudo time-series for the temporal analysis of cross section data

Author keywords

Cross section data; Dynamic bayesian networks; PQ trees; Pseudo time series

Indexed keywords

BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); DISEASES; TIME SERIES ANALYSIS; TREES (MATHEMATICS);

EID: 38049047983     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-74825-0_17     Document Type: Conference Paper
Times cited : (8)

References (15)
  • 1
    • 31844446899 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning for examples
    • Technical Report, Univ. of Chicago, Department of Computer Science TR-2004-06
    • Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning for examples. Technical Report, Univ. of Chicago, Department of Computer Science (TR-2004-06) (2004)
    • (2004)
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 2
    • 0017216776 scopus 로고
    • Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms
    • Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences (13), 335-379 (1976)
    • (1976) Journal of Computer and System Sciences , vol.13 , pp. 335-379
    • Booth, K.S.1    Lueker, G.S.2
  • 6
    • 9944259646 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: The combination of knowledge and statistical data. In: KDD Workshop, pp. 85-96 (1994)
    • (1994) KDD Workshop , pp. 85-96
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 7
    • 0002980999 scopus 로고
    • Estimation of production function parameters combining time-series and cross-section data
    • Hoch, I.: Estimation of production function parameters combining time-series and cross-section data. Econometrica 30(1), 34-53 (1962)
    • (1962) Econometrica , vol.30 , Issue.1 , pp. 34-53
    • Hoch, I.1
  • 8
    • 0037620665 scopus 로고    scopus 로고
    • Reconstructing the temporal ordering of biological samples using microarray data
    • Magwene, P.M., Lizardi, P., Kim, J.: Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19(7), 842-850 (2003)
    • (2003) Bioinformatics , vol.19 , Issue.7 , pp. 842-850
    • Magwene, P.M.1    Lizardi, P.2    Kim, J.3
  • 10
    • 0036739284 scopus 로고    scopus 로고
    • Geometry of gene expression dynamics
    • Rifkin, S.A., Kim., J.: Geometry of gene expression dynamics. Bioinformatics 18(9), 1176-1183 (2002)
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1176-1183
    • Rifkin, S.A.1    Kim, J.2
  • 11
    • 0035106774 scopus 로고    scopus 로고
    • Combining datasets to predict the effects of regulation of environmental lead exposure in housing stock
    • Strauss, W.J., Carroll, R.J., Bortnick, S.M., Menkedick, J.R., Schultz, B.D.: Combining datasets to predict the effects of regulation of environmental lead exposure in housing stock. Biometrics 57(1), 203-210 (2001)
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 203-210
    • Strauss, W.J.1    Carroll, R.J.2    Bortnick, S.M.3    Menkedick, J.R.4    Schultz, B.D.5
  • 13
    • 38049012105 scopus 로고    scopus 로고
    • Learning dynamic bayesian networks from multivariate time series with changing dependencies. Intelligent Data Analysis- An
    • Tucker, A., Liu, X.: Learning dynamic bayesian networks from multivariate time series with changing dependencies. Intelligent Data Analysis- An International Journal 8(5), 469-480 (2004)
    • (2004) International Journal , vol.8 , Issue.5 , pp. 469-480
    • Tucker, A.1    Liu, X.2
  • 15
    • 19344369418 scopus 로고    scopus 로고
    • A spatio-temporal bayesian network classifier for understanding visual field deterioration
    • Tucker, A., Vinciotti, V., Garway-Heath, D., Liu, X.: A spatio-temporal bayesian network classifier for understanding visual field deterioration. Artificial Intelligence in Medicine (34), 163-177 (2005)
    • (2005) Artificial Intelligence in Medicine , vol.34 , pp. 163-177
    • Tucker, A.1    Vinciotti, V.2    Garway-Heath, D.3    Liu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.