메뉴 건너뛰기




Volumn 43, Issue 2, 2010, Pages 190-199

A data mining framework for time series estimation

Author keywords

Data mining; Regression; System identification; Time series

Indexed keywords

BIOMEDICAL PROBLEMS; BIOMEDICAL RESEARCH; DISSIMILARITY MEASURES; DYNAMIC SYSTEMS; ESTIMATION PROCESS; ESTIMATION TECHNIQUES; FEATURE VECTORS; INPUT/OUTPUT; INTRA-CRANIAL PRESSURE; MAPPING FUNCTIONS; REGRESSION; RUNTIMES; SYSTEM IDENTIFICATION; SYSTEM IDENTIFICATIONS; SYSTEMS MODELING APPROACH;

EID: 77949265483     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2009.11.002     Document Type: Article
Times cited : (14)

References (28)
  • 1
    • 0035552015 scopus 로고    scopus 로고
    • Comparing the similarity of time-series gene expression using signal processing metrics
    • Butte A.J., Bao L., Reis B.Y., Watkins T.W., and Kohane I.S. Comparing the similarity of time-series gene expression using signal processing metrics. J Biomed Inform 34 6 (2001) 396-405
    • (2001) J Biomed Inform , vol.34 , Issue.6 , pp. 396-405
    • Butte, A.J.1    Bao, L.2    Reis, B.Y.3    Watkins, T.W.4    Kohane, I.S.5
  • 2
    • 18844368769 scopus 로고    scopus 로고
    • Temporal data mining for the quality assessment of hemodialysis services
    • Bellazzi R., Larizza C., Magni P., and Bellazzi R. Temporal data mining for the quality assessment of hemodialysis services. Artif Intell Med 34 1 (2005) 25-39
    • (2005) Artif Intell Med , vol.34 , Issue.1 , pp. 25-39
    • Bellazzi, R.1    Larizza, C.2    Magni, P.3    Bellazzi, R.4
  • 3
    • 36049045495 scopus 로고    scopus 로고
    • Knowledge construction from time series data using a collaborative exploration system
    • Guyet T., Garbay C., and Dojat M. Knowledge construction from time series data using a collaborative exploration system. J Biomed Inform 40 6 (2007) 672-687
    • (2007) J Biomed Inform , vol.40 , Issue.6 , pp. 672-687
    • Guyet, T.1    Garbay, C.2    Dojat, M.3
  • 4
    • 0034746674 scopus 로고    scopus 로고
    • Computerised anaesthesia monitoring using fuzzy trend templates
    • Jones R.W., Harrison M.J., and Lowe A. Computerised anaesthesia monitoring using fuzzy trend templates. Artif Intell Med 21 1-3 (2001) 247-251
    • (2001) Artif Intell Med , vol.21 , Issue.1-3 , pp. 247-251
    • Jones, R.W.1    Harrison, M.J.2    Lowe, A.3
  • 5
    • 0032913269 scopus 로고    scopus 로고
    • Diagnostic monitoring in anaesthesia using fuzzy trend templates for matching temporal patterns
    • Lowe A., Harrison M.J., and Jones R.W. Diagnostic monitoring in anaesthesia using fuzzy trend templates for matching temporal patterns. Artif Intell Med 16 2 (1999) 183-199
    • (1999) Artif Intell Med , vol.16 , Issue.2 , pp. 183-199
    • Lowe, A.1    Harrison, M.J.2    Jones, R.W.3
  • 6
    • 36049047441 scopus 로고    scopus 로고
    • Precedence temporal networks to represent temporal relationships in gene expression data
    • Sacchi L., Larizza C., Magni P., and Bellazzi R. Precedence temporal networks to represent temporal relationships in gene expression data. J Biomed Inform 40 6 (2007) 761-774
    • (2007) J Biomed Inform , vol.40 , Issue.6 , pp. 761-774
    • Sacchi, L.1    Larizza, C.2    Magni, P.3    Bellazzi, R.4
  • 9
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • Keogh EJ, Chu S, Hart D, Pazzani MJ. An online algorithm for segmenting time series. In: ICDM; 2001. p. 289-96.
    • (2001) ICDM , pp. 289-296
    • Keogh, E.J.1    Chu, S.2    Hart, D.3    Pazzani, M.J.4
  • 11
    • 15544364892 scopus 로고    scopus 로고
    • Discovery of time-series motif from multi-dimensional data based on MDL principle
    • Tanaka Y., Iwamoto K., and Uehara K. Discovery of time-series motif from multi-dimensional data based on MDL principle. Mach Learn 58 2-3 (2005) 269-300
    • (2005) Mach Learn , vol.58 , Issue.2-3 , pp. 269-300
    • Tanaka, Y.1    Iwamoto, K.2    Uehara, K.3
  • 12
    • 29144509475 scopus 로고    scopus 로고
    • Learning states and rules for detecting anomalies in time series
    • Salvador S., and Chan P. Learning states and rules for detecting anomalies in time series. Appl Intell 23 3 (2005) 241-255
    • (2005) Appl Intell , vol.23 , Issue.3 , pp. 241-255
    • Salvador, S.1    Chan, P.2
  • 13
    • 34548077518 scopus 로고    scopus 로고
    • Mining similar temporal patterns in long time-series data and its application to medicine
    • IEEE Computer Society, Washington, DC, USA
    • Hirano S., and Tsumoto S. Mining similar temporal patterns in long time-series data and its application to medicine. ICDM'02: proceedings of the 2002 IEEE international conference on data mining (2002), IEEE Computer Society, Washington, DC, USA 219
    • (2002) ICDM'02: proceedings of the 2002 IEEE international conference on data mining , pp. 219
    • Hirano, S.1    Tsumoto, S.2
  • 15
    • 84943264048 scopus 로고    scopus 로고
    • H. Ppner, Discovery of temporal patterns - learning rules about the qualitative behavior of time series. In: Proceedings of the 5th European conference on principles and practice of knowledge discovery in databases; 2001. p. 192-203.
    • H. Ppner, Discovery of temporal patterns - learning rules about the qualitative behavior of time series. In: Proceedings of the 5th European conference on principles and practice of knowledge discovery in databases; 2001. p. 192-203.
  • 16
    • 0030970060 scopus 로고    scopus 로고
    • Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function
    • Chen C.H., Nevo E., Fetics B., Pak P.H., Yin F.C., Maughan W.L., et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation 95 7 (1997) 1827-1836
    • (1997) Circulation , vol.95 , Issue.7 , pp. 1827-1836
    • Chen, C.H.1    Nevo, E.2    Fetics, B.3    Pak, P.H.4    Yin, F.C.5    Maughan, W.L.6
  • 17
    • 0032984064 scopus 로고    scopus 로고
    • Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry
    • Fetics B., Nevo E., Chen C.H., and Kass D.A. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans Biomed Eng 46 6 (1999) 698-706
    • (1999) IEEE Trans Biomed Eng , vol.46 , Issue.6 , pp. 698-706
    • Fetics, B.1    Nevo, E.2    Chen, C.H.3    Kass, D.A.4
  • 18
    • 34250845819 scopus 로고    scopus 로고
    • Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms
    • Swamy G., Ling Q., Li T., and Mukkamala R. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms. Am J Physiol Heart Circ Physiol 292 5 (2007) H2257-H2264
    • (2007) Am J Physiol Heart Circ Physiol , vol.292 , Issue.5
    • Swamy, G.1    Ling, Q.2    Li, T.3    Mukkamala, R.4
  • 19
    • 33947538321 scopus 로고    scopus 로고
    • Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters
    • Hu X., Nenov V., Bergsneider M., Glenn T.C., Vespa P., and Martin N. Estimation of hidden state variables of the intracranial system using constrained nonlinear Kalman filters. IEEE Trans Biomed Eng 54 4 (2007) 597-610
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.4 , pp. 597-610
    • Hu, X.1    Nenov, V.2    Bergsneider, M.3    Glenn, T.C.4    Vespa, P.5    Martin, N.6
  • 20
    • 33745280260 scopus 로고    scopus 로고
    • A data mining framework of noninvasive intracranial pressure assessment
    • Hu X., Nenov V., Bergsneider M., and Martin N. A data mining framework of noninvasive intracranial pressure assessment. Biomed Signal Process Control 1 1 (2006) 64-77
    • (2006) Biomed Signal Process Control , vol.1 , Issue.1 , pp. 64-77
    • Hu, X.1    Nenov, V.2    Bergsneider, M.3    Martin, N.4
  • 22
    • 0032887389 scopus 로고    scopus 로고
    • Linear and nonlinear analysis of human dynamic cerebral autoregulation
    • Panerai R.B., Dawson S.L., and Potter J.F. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol 277 3 Pt. 2 (1999) H1089-H1099
    • (1999) Am J Physiol , vol.277 , Issue.3 PART 2
    • Panerai, R.B.1    Dawson, S.L.2    Potter, J.F.3
  • 24
    • 84949075045 scopus 로고
    • Subspace model identification. 1. The output-error state-space model identification class of algorithms
    • Verhaegen M., and Dewilde P. Subspace model identification. 1. The output-error state-space model identification class of algorithms. Int J Control 56 5 (1992) 1187-1210
    • (1992) Int J Control , vol.56 , Issue.5 , pp. 1187-1210
    • Verhaegen, M.1    Dewilde, P.2
  • 25
    • 0025532490 scopus 로고
    • Canonical variate analysis in identification, filtering and adaptive control
    • Honolulu, US;
    • Larimore WE. Canonical variate analysis in identification, filtering and adaptive control. In: 29th IEEE conference decision and control, Honolulu, US; 1990. p. 596-604.
    • (1990) 29th IEEE conference decision and control , pp. 596-604
    • Larimore, W.E.1
  • 28
    • 71049182338 scopus 로고    scopus 로고
    • Time series mining approach for noninvasive intracranial pressure assessment: An investigation of different regularization techniques
    • Los Angeles, USA; accepted for publication
    • Wu S, Xu P, Asgari S, Bergsneider M, Hu X. Time series mining approach for noninvasive intracranial pressure assessment: an investigation of different regularization techniques. In: 2009 world congress on computer science and information engineering, Los Angeles, USA; accepted for publication.
    • 2009 world congress on computer science and information engineering
    • Wu, S.1    Xu, P.2    Asgari, S.3    Bergsneider, M.4    Hu, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.