-
1
-
-
0028202832
-
Respiratory chains and bioenergetics of acetic acid bacteria
-
Matsushita K, Toyama H, Adachi O. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol. 36:247-301.
-
(1994)
Adv. Microb. Physiol.
, vol.36
, pp. 247-301
-
-
Matsushita, K.1
Toyama, H.2
Adachi, O.3
-
2
-
-
0004978435
-
Regulation of gluconate and ketogluconate production in Gluconobacter oxydans ATCC 621H
-
Levering PR, Weenk G, Olijve W, Dijkhuizen L, Harder W. 1988. Regulation of gluconate and ketogluconate production in Gluconobacter oxydans ATCC 621H. Arch. Microbiol. 149:534-539.
-
(1988)
Arch. Microbiol.
, vol.149
, pp. 534-539
-
-
Levering, P.R.1
Weenk, G.2
Olijve, W.3
Dijkhuizen, L.4
Harder, W.5
-
3
-
-
13844297220
-
Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans
-
Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U. 2005. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 23:195-200.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 195-200
-
-
Prust, C.1
Hoffmeister, M.2
Liesegang, H.3
Wiezer, A.4
Fricke, W.F.5
Ehrenreich, A.6
Gottschalk, G.7
Deppenmeier, U.8
-
4
-
-
55249126454
-
Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans
-
Deppenmeier U, Ehrenreich A. 2009. Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J. Mol. Microbiol. Biotechnol. 16:69-80.
-
(2009)
J. Mol. Microbiol. Biotechnol.
, vol.16
, pp. 69-80
-
-
Deppenmeier, U.1
Ehrenreich, A.2
-
6
-
-
34249904801
-
The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia,
-
In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed), The prokaryotes, vol. 5, 3rd ed. Springer-Verlag GmbH, Heidelberg, Germany
-
Kersters K, Lisdiyanti P, Komagata K, Swings J. 2006. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia, p 163-200. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed), The prokaryotes, vol. 5, 3rd ed. Springer-Verlag GmbH, Heidelberg, Germany.
-
(2006)
, pp. 163-200
-
-
Kersters, K.1
Lisdiyanti, P.2
Komagata, K.3
Swings, J.4
-
7
-
-
0037795745
-
The oxidative pentose phosphate pathway: structure and organisation
-
Kruger NJ, von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol. 6:236-246.
-
(2003)
Curr. Opin. Plant Biol.
, vol.6
, pp. 236-246
-
-
Kruger, N.J.1
von Schaewen, A.2
-
8
-
-
84857912495
-
Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport
-
Siedler S, Bringer S, Blank LM, Bott M. 2012. Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport. Appl. Microbiol. Biotechnol. 93:1459-1467.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.93
, pp. 1459-1467
-
-
Siedler, S.1
Bringer, S.2
Blank, L.M.3
Bott, M.4
-
9
-
-
0038782471
-
Mikrobiologie
-
Spektrum, Akademischer Verlag, Heidelberg-Berlin, Germany
-
Fritsche W. 1999. Mikrobiologie. Spektrum, Akademischer Verlag, Heidelberg-Berlin, Germany.
-
(1999)
-
-
Fritsche, W.1
-
10
-
-
0000576246
-
Glucose and gluconate dissimilation in Acetobacter suboxydans
-
Kitos PA, Wang CH, Mohler BA, King TE, Cheldelin VH. 1958. Glucose and gluconate dissimilation in Acetobacter suboxydans. J. Biol. Chem. 233: 1295-1298.
-
(1958)
J. Biol. Chem.
, vol.233
, pp. 1295-1298
-
-
Kitos, P.A.1
Wang, C.H.2
Mohler, B.A.3
King, T.E.4
Cheldelin, V.H.5
-
11
-
-
79953779523
-
Selective, high conversion of D-glucose to 5-keto-D-gluconate by Gluconobacter suboxydans
-
Ano Y, Shinagawa E, Adachi O, Toyama H, Yakushi T, Matsushita K. 2011. Selective, high conversion of D-glucose to 5-keto-D-gluconate by Gluconobacter suboxydans. Biosci. Biotechnol. Biochem. 75:586-589.
-
(2011)
Biosci. Biotechnol. Biochem.
, vol.75
, pp. 586-589
-
-
Ano, Y.1
Shinagawa, E.2
Adachi, O.3
Toyama, H.4
Yakushi, T.5
Matsushita, K.6
-
12
-
-
0036526412
-
Metabolic network analysis of Bacillus clausii on minimal and semirich medium using 13Clabeled glucose
-
Christiansen T, Christensen B, Nielsen J. 2002. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using 13Clabeled glucose. Metab. Eng. 4:159-169.
-
(2002)
Metab. Eng.
, vol.4
, pp. 159-169
-
-
Christiansen, T.1
Christensen, B.2
Nielsen, J.3
-
13
-
-
33947503169
-
Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography- mass spectrometry
-
Luo B, Grönke K, Takors R, Wandrey C, Oldiges M. 2007. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography- mass spectrometry. J. Chromatogr. A 1147:153-164.
-
(2007)
J. Chromatogr. A
, vol.1147
, pp. 153-164
-
-
Luo, B.1
Grönke, K.2
Takors, R.3
Wandrey, C.4
Oldiges, M.5
-
14
-
-
84856762139
-
Influence of oxygen limitation, absence of the cytochrome bc1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology
-
Hanke T, Richhardt J, Polen T, Sahm H, Bringer S, Bott M. 2012. Influence of oxygen limitation, absence of the cytochrome bc1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. J. Biotechnol. 157:359-372.
-
(2012)
J. Biotechnol.
, vol.157
, pp. 359-372
-
-
Hanke, T.1
Richhardt, J.2
Polen, T.3
Sahm, H.4
Bringer, S.5
Bott, M.6
-
15
-
-
84868332152
-
Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a δedd δeda mutant on mannitol
-
Richhardt J, Bringer S, Bott M. 2012. Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a δedd δeda mutant on mannitol. Appl. Environ. Microbiol. 78:6975-6986.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 6975-6986
-
-
Richhardt, J.1
Bringer, S.2
Bott, M.3
-
16
-
-
19644385170
-
Mass spectrometry in metabolome analysis
-
Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. 2005. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24:613-646.
-
(2005)
Mass Spectrom. Rev.
, vol.24
, pp. 613-646
-
-
Villas-Boas, S.G.1
Mas, S.2
Akesson, M.3
Smedsgaard, J.4
Nielsen, J.5
-
17
-
-
49049107324
-
Analysis of amino acids without derivatization in barley extracts by LCMS- MS
-
Thiele B, Füllner K, Stein N, Oldiges M, Kuhn AJ, Hofmann D. 2008. Analysis of amino acids without derivatization in barley extracts by LCMS- MS. Anal. Bioanal. Chem. 391:2663-2672.
-
(2008)
Anal. Bioanal. Chem.
, vol.391
, pp. 2663-2672
-
-
Thiele, B.1
Füllner, K.2
Stein, N.3
Oldiges, M.4
Kuhn, A.J.5
Hofmann, D.6
-
18
-
-
34047177923
-
Metabolic flux analysis at ultra short time scale: isotopically nonstationary 13C labeling experiments
-
Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W. 2007. Metabolic flux analysis at ultra short time scale: isotopically nonstationary 13C labeling experiments. J. Biotechnol. 129:249-267.
-
(2007)
J. Biotechnol.
, vol.129
, pp. 249-267
-
-
Nöh, K.1
Grönke, K.2
Luo, B.3
Takors, R.4
Oldiges, M.5
Wiechert, W.6
-
19
-
-
33846061120
-
Metabolic networks in motion: 13C-based flux analysis
-
Sauer U. 2006. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2:62.
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 62
-
-
Sauer, U.1
-
20
-
-
0034741983
-
13C metabolic flux analysis
-
Wiechert W. 2001. 13C metabolic flux analysis. Metab. Eng. 3:195-206.
-
(2001)
Metab. Eng.
, vol.3
, pp. 195-206
-
-
Wiechert, W.1
-
21
-
-
84871768724
-
13CFLUX2-high-performance software suite for 13C-metabolic flux analysis
-
Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W. 2013. 13CFLUX2-high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143-145.
-
(2013)
Bioinformatics
, vol.29
, pp. 143-145
-
-
Weitzel, M.1
Nöh, K.2
Dalman, T.3
Niedenführ, S.4
Stute, B.5
Wiechert, W.6
-
22
-
-
0014082204
-
Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase
-
Fraenkel DG, Levisohn SR. 1967. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J. Bacteriol. 93:1571-1578.
-
(1967)
J. Bacteriol.
, vol.93
, pp. 1571-1578
-
-
Fraenkel, D.G.1
Levisohn, S.R.2
-
23
-
-
0033946341
-
Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo
-
Moritz B, Striegel K, De Graaf AA, Sahm H. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267:3442-3452.
-
(2000)
Eur. J. Biochem.
, vol.267
, pp. 3442-3452
-
-
Moritz, B.1
Striegel, K.2
De Graaf, A.A.3
Sahm, H.4
-
24
-
-
78149358619
-
Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans
-
Rauch B, Pahlke J, Schweiger P, Deppenmeier U. 2010. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 88:711-718.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.88
, pp. 711-718
-
-
Rauch, B.1
Pahlke, J.2
Schweiger, P.3
Deppenmeier, U.4
-
25
-
-
4544371182
-
Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans
-
Tonouchi N, Sugiyama M, Yokozeki K. 2003. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Biosci. Biotechnol. Biochem. 67:2648-2651.
-
(2003)
Biosci. Biotechnol. Biochem. 67
, pp. 2648-2651
-
-
Tonouchi, N.1
Sugiyama, M.2
Yokozeki, K.3
-
26
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
-
(1976)
Anal. Biochem.
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
28
-
-
0013050778
-
Gluconate dehydrogenase, 2-keto-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization
-
Shinagawa E, Matsushita K, Adachi O. 1984. Gluconate dehydrogenase, 2-keto-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agric. Biol. Chem. 48:1517-1522.
-
(1984)
Agric. Biol. Chem.
, vol.48
, pp. 1517-1522
-
-
Shinagawa, E.1
Matsushita, K.2
Adachi, O.3
-
29
-
-
0037393281
-
5-Keto-Dgluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species
-
Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O. 2003. 5-Keto-Dgluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl. Environ. Microbiol. 69:1959-1966.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1959-1966
-
-
Matsushita, K.1
Fujii, Y.2
Ano, Y.3
Toyama, H.4
Shinjoh, M.5
Tomiyama, N.6
Miyazaki, T.7
Sugisawa, T.8
Hoshino, T.9
Adachi, O.10
-
30
-
-
0036483483
-
Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IF03255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E
-
Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. 2002. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IF03255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem. 66:262-270.
-
(2002)
coli. Biosci. Biotechnol. Biochem.
, vol.66
, pp. 262-270
-
-
Miyazaki, T.1
Tomiyama, N.2
Shinjoh, M.3
Hoshino, T.4
-
31
-
-
0029019156
-
Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans
-
Klasen R, Bringer-Meyer S, Sahm H. 1995. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans. J. Bacteriol. 77:2637-2643.
-
(1995)
J. Bacteriol.
, vol.77
, pp. 2637-2643
-
-
Klasen, R.1
Bringer-Meyer, S.2
Sahm, H.3
-
32
-
-
0024637186
-
Role of NADP dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans
-
Pronk JT, Levering PR, Oiijve W, van Dijken JP. 1989. Role of NADP dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme Microb. Technol. 11:160-164.
-
(1989)
Enzyme Microb. Technol.
, vol.11
, pp. 160-164
-
-
Pronk, J.T.1
Levering, P.R.2
Oiijve, W.3
van Dijken, J.P.4
-
33
-
-
77954202864
-
Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase
-
Dibrova DV, Galperin M, Mulkidjanian A. 2010. Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 26:1473-1476.
-
(2010)
Bioinformatics 26
, pp. 1473-1476
-
-
Dibrova, D.V.1
Galperin, M.2
Mulkidjanian, A.3
-
34
-
-
33847229145
-
Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H
-
Hölscher T, Weinert-Sepalage D, Görisch H. 2007. Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153:499-506.
-
(2007)
Microbiology
, vol.153
, pp. 499-506
-
-
Hölscher, T.1
Weinert-Sepalage, D.2
Görisch, H.3
-
35
-
-
0037006970
-
The alternating site, binding change mechanism for proton translocation by transhydrogenase
-
Jackson JB, White SA, Quirk PG, Venning JD. 2002. The alternating site, binding change mechanism for proton translocation by transhydrogenase. Biochemistry 41:4173-4185.
-
(2002)
Biochemistry
, vol.41
, pp. 4173-4185
-
-
Jackson, J.B.1
White, S.A.2
Quirk, P.G.3
Venning, J.D.4
-
36
-
-
84876694510
-
Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases
-
18 September, [Epub ahead of print.] doi:10.1007/s00253-012-4395-3
-
Schweiger P, Gross H, Zeiser J, Deppenmeier U. 18 September 2012. Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases. Appl. Microbiol. Biotechnol. [Epub ahead of print.] doi:10 .1007/s00253-012-4395-3.
-
(2012)
Appl. Microbiol. Biotechnol.
-
-
Schweiger, P.1
Gross, H.2
Zeiser, J.3
Deppenmeier, U.4
-
38
-
-
0028982788
-
Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis
-
Maul B, Völker U, Riethdorf S, Engelmann S, Hecker M. 1995. Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol. Gen. Genet. 248:114-120.
-
(1995)
Mol. Gen. Genet. 248
, pp. 114-120
-
-
Maul, B.1
Völker, U.2
Riethdorf, S.3
Engelmann, S.4
Hecker, M.5
-
39
-
-
0018423196
-
Analysis of growth of Gluconobacter oxydans in glucose containing media
-
Olijve W, Kok JJ. 1979. Analysis of growth of Gluconobacter oxydans in glucose containing media. Arch. Microbiol. 121:283-290.
-
(1979)
Arch. Microbiol.
, vol.121
, pp. 283-290
-
-
Olijve, W.1
Kok, J.J.2
-
40
-
-
33646325234
-
Nutrition of the acetic acid bacteria
-
Rao MR, Stokes JL. 1953. Nutrition of the acetic acid bacteria. J. Bacteriol. 65:405-412.
-
(1953)
J. Bacteriol.
, vol.65
, pp. 405-412
-
-
Rao, M.R.1
Stokes, J.L.2
-
41
-
-
45849142238
-
Biotechnological applications of acetic acid bacteria
-
Raspor PP, Goranovic? D. 2008. Biotechnological applications of acetic acid bacteria. Crit. Rev. Biotechnol. 28:101-124.
-
(2008)
Crit. Rev. Biotechnol.
, vol.28
, pp. 101-124
-
-
Raspor, P.P.1
Goranovic, D.2
-
42
-
-
79959861040
-
TARDIS-based microbial metabolomics: time and relative differences in systems
-
Winder CL, Dunn WB, Goodacre R. 2011. TARDIS-based microbial metabolomics: time and relative differences in systems. Trends Microbiol. 19:315-322.
-
(2011)
Trends Microbiol.
, vol.19
, pp. 315-322
-
-
Winder, C.L.1
Dunn, W.B.2
Goodacre, R.3
-
43
-
-
84877740250
-
Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H
-
25 January,[Epub ahead of print.] doi:10.1007/s00253-013-4707-2
-
Richhardt J, Bringer S, Bott M. 25 January 2013. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl. Microbiol. Biotechnol. [Epub ahead of print.] doi:10.1007/s00253-013-4707-2.
-
(2013)
Appl. Microbiol. Biotechnol.
-
-
Richhardt, J.1
Bringer, S.2
Bott, M.3
-
44
-
-
64049099490
-
Different biochemical mechanisms ensure network- wide balancing of reducing equivalents in microbial metabolism
-
Fuhrer T, Sauer U. 2009. Different biochemical mechanisms ensure network- wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 191:2112-2121.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 2112-2121
-
-
Fuhrer, T.1
Sauer, U.2
|