메뉴 건너뛰기




Volumn 16, Issue 1-2, 2008, Pages 69-80

Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans

Author keywords

Acetic acid bacteria; Biotechnology; Pyrroloquinoline quinone dependent dehydrogenases; Vinegar

Indexed keywords

ACETIC ACID; OXIDOREDUCTASE; SUGAR;

EID: 55249126454     PISSN: 14641801     EISSN: None     Source Type: Journal    
DOI: 10.1159/000142895     Document Type: Review
Times cited : (102)

References (77)
  • 1
    • 0035749214 scopus 로고    scopus 로고
    • Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: A versatile enzyme for the oxidative fermentation of various ketoses
    • Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K: Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem 2001a; 65:2755-2762.
    • (2001) Biosci Biotechnol Biochem , vol.65 , pp. 2755-2762
    • Adachi, O.1    Fujii, Y.2    Ghaly, M.F.3    Toyama, H.4    Shinagawa, E.5    Matsushita, K.6
  • 2
    • 0035220919 scopus 로고    scopus 로고
    • Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation
    • Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K: Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 2001b;65:115-125.
    • (2001) Biosci Biotechnol Biochem , vol.65 , pp. 115-125
    • Adachi, O.1    Fujii, Y.2    Ano, Y.3    Moonmangmee, D.4    Toyama, H.5    Shinagawa, E.6    Theeragool, G.7    Lotong, N.8    Matsushita, K.9
  • 5
    • 0037056007 scopus 로고    scopus 로고
    • The organization of the membrane domain and its interaction with the NADP(H)-binding site in proton-translocating transhydrogenase from E. coli
    • Bizouarn T, Althage M, Pedersen A, Tigerstrom A, Karlsson J, Johansson C, Rydstrom J: The organization of the membrane domain and its interaction with the NADP(H)-binding site in proton-translocating transhydrogenase from E. coli. Biochim Biophys Acta 2002;1555:122-127.
    • (2002) Biochim Biophys Acta , vol.1555 , pp. 122-127
    • Bizouarn, T.1    Althage, M.2    Pedersen, A.3    Tigerstrom, A.4    Karlsson, J.5    Johansson, C.6    Rydstrom, J.7
  • 6
  • 7
    • 0034662750 scopus 로고    scopus 로고
    • Protein-protein recognition, hydride transfer and proton pumping in the transhydrogenase complex
    • Buckley PA, Baz Jackson J, Schneider T, White SA, Rice DW, Baker PJ: Protein-protein recognition, hydride transfer and proton pumping in the transhydrogenase complex. Structure 2000;8:809-815.
    • (2000) Structure , vol.8 , pp. 809-815
    • Buckley, P.A.1    Baz Jackson, J.2    Schneider, T.3    White, S.A.4    Rice, D.W.5    Baker, P.J.6
  • 8
    • 0025978267 scopus 로고
    • The o-type oxidase of the acidophilic methylotroph Acetobacter methanolicus
    • Chan HT, Anthony C: The o-type oxidase of the acidophilic methylotroph Acetobacter methanolicus. J Gen Microbiol 1991;137:693-704.
    • (1991) J Gen Microbiol , vol.137 , pp. 693-704
    • Chan, H.T.1    Anthony, C.2
  • 9
    • 0035206267 scopus 로고    scopus 로고
    • Pyruvate decarboxylase: A key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus
    • Chandra Raj K, Ingram LO, Maupin-Furlow JA: Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol 2001;176:443-451.
    • (2001) Arch Microbiol , vol.176 , pp. 443-451
    • Chandra Raj, K.1    Ingram, L.O.2    Maupin-Furlow, J.A.3
  • 10
    • 0033694591 scopus 로고    scopus 로고
    • Changes in major components of tea fungus metabolites during prolonged fermentation
    • Chen C, Liu BY: Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol 2000;89: 834-839.
    • (2000) J Appl Microbiol , vol.89 , pp. 834-839
    • Chen, C.1    Liu, B.Y.2
  • 11
    • 0347125317 scopus 로고    scopus 로고
    • Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108
    • Chinnawirotpisan P, Matsushita K, Toyama H, Adachi O, Limtong S, Theeragool G: Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng 2003;96:564-571.
    • (2003) J Biosci Bioeng , vol.96 , pp. 564-571
    • Chinnawirotpisan, P.1    Matsushita, K.2    Toyama, H.3    Adachi, O.4    Limtong, S.5    Theeragool, G.6
  • 12
    • 0022759517 scopus 로고
    • Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli
    • Clarke DM, Loo TW, Gillam S, Bragg PD: Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur J Biochem 1986;158:647-653.
    • (1986) Eur J Biochem , vol.158 , pp. 647-653
    • Clarke, D.M.1    Loo, T.W.2    Gillam, S.3    Bragg, P.D.4
  • 13
    • 0035094747 scopus 로고    scopus 로고
    • The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase
    • Cotton NPJ, White SA, Peake SJ, McSweeney S, Baz Jackson J: The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase. Structure 2001;9:165-176.
    • (2001) Structure , vol.9 , pp. 165-176
    • Cotton, N.P.J.1    White, S.A.2    Peake, S.J.3    McSweeney, S.4    Baz Jackson, J.5
  • 15
    • 0004925825 scopus 로고
    • Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria
    • De Ley J: Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J Gen Microbiol 1963;24:31-50.
    • (1963) J Gen Microbiol , vol.24 , pp. 31-50
    • De Ley, J.1
  • 16
    • 55249097128 scopus 로고    scopus 로고
    • De Ley J, Swings J: Genus I. Acetobacter; in Krieg NR, Holt JG (eds): Bergey's Manual of Systematic Bacteriology. Baltimore, Williams & Wilkins, 1984, 1, pp 268-274.
    • De Ley J, Swings J: Genus I. Acetobacter; in Krieg NR, Holt JG (eds): Bergey's Manual of Systematic Bacteriology. Baltimore, Williams & Wilkins, 1984, vol 1, pp 268-274.
  • 17
    • 0000539854 scopus 로고
    • The genus Gluconobacter; in Krieg NR
    • Holt JG eds, Baltimore, Williams & Wilkins
    • De Ley J, Swings J, Gossele F: The genus Gluconobacter; in Krieg NR, Holt JG (eds): Bergey's Manual of Systematic Bacteriology. Baltimore, Williams & Wilkins, 1984, vol 1, pp 267-278.
    • (1984) Bergey's Manual of Systematic Bacteriology , vol.1 , pp. 267-278
    • De Ley, J.1    Swings, J.2    Gossele, F.3
  • 18
    • 0029328416 scopus 로고
    • Cellulose biosynthesis
    • Delmer DP, Amor Y: Cellulose biosynthesis. Plant Cell 1995;7:987-1000.
    • (1995) Plant Cell , vol.7 , pp. 987-1000
    • Delmer, D.P.1    Amor, Y.2
  • 19
    • 0036709867 scopus 로고    scopus 로고
    • Biochemistry and biotechnological applications of Gluconobacter strains
    • Deppenmeier U, Hoffmeister M, Prust C: Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 2002;59:1513-1533.
    • (2002) Appl Microbiol Biotechnol , vol.59 , pp. 1513-1533
    • Deppenmeier, U.1    Hoffmeister, M.2    Prust, C.3
  • 20
    • 0001244150 scopus 로고
    • Acetic acid bacteria in winemaking: A review
    • Drysdale GS, Fleet GH: Acetic acid bacteria in winemaking: a review. Am J Enol Vitic 1988; 39:143-154.
    • (1988) Am J Enol Vitic , vol.39 , pp. 143-154
    • Drysdale, G.S.1    Fleet, G.H.2
  • 21
    • 0025881879 scopus 로고
    • Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain
    • Dueweke TJ, Gennis RB: Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain. Biochemistry 1991;30:3401-3406.
    • (1991) Biochemistry , vol.30 , pp. 3401-3406
    • Dueweke, T.J.1    Gennis, R.B.2
  • 23
    • 19544390735 scopus 로고    scopus 로고
    • Validation of publication of new names and new combinations previously effectively published outside the IJSEM
    • Euzéby J: Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2005;55:983-985.
    • (2005) Int J Syst Evol Microbiol , vol.55 , pp. 983-985
    • Euzéby, J.1
  • 25
    • 0032756590 scopus 로고    scopus 로고
    • Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug
    • Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E, Sly LI: Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 1999;49:1681-1693.
    • (1999) Int J Syst Bacteriol , vol.49 , pp. 1681-1693
    • Franke, I.H.1    Fegan, M.2    Hayward, C.3    Leonard, G.4    Stackebrandt, E.5    Sly, L.I.6
  • 27
    • 0015465291 scopus 로고
    • Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans
    • Greenfield S, Claus GW: Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol 1972;112:1295-1301.
    • (1972) J Bacteriol , vol.112 , pp. 1295-1301
    • Greenfield, S.1    Claus, G.W.2
  • 29
    • 0002963658 scopus 로고
    • Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans
    • Hauge JG, King TE, Cheldelin VH: Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem 1955;214:11-26.
    • (1955) J Biol Chem , vol.214 , pp. 11-26
    • Hauge, J.G.1    King, T.E.2    Cheldelin, V.H.3
  • 30
    • 0346461714 scopus 로고    scopus 로고
    • Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans
    • Hekmat D, Bauer R, Fricke J: Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 2003;26:109-116.
    • (2003) Bioprocess Biosyst Eng , vol.26 , pp. 109-116
    • Hekmat, D.1    Bauer, R.2    Fricke, J.3
  • 31
    • 1642369327 scopus 로고    scopus 로고
    • Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343
    • Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H: Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol 2004;64:86-90.
    • (2004) Appl Microbiol Biotechnol , vol.64 , pp. 86-90
    • Herrmann, U.1    Merfort, M.2    Jeude, M.3    Bringer-Meyer, S.4    Sahm, H.5
  • 32
    • 33750467665 scopus 로고    scopus 로고
    • Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H
    • Hölscher T, Görisch H: Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bact 2006;188:7668-7676.
    • (2006) J Bact , vol.188 , pp. 7668-7676
    • Hölscher, T.1    Görisch, H.2
  • 33
    • 0037974602 scopus 로고    scopus 로고
    • Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization
    • Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T: Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochim Biophys Acta 2003;1647:278-288.
    • (2003) Biochim Biophys Acta , vol.1647 , pp. 278-288
    • Hoshino, T.1    Sugisawa, T.2    Shinjoh, M.3    Tomiyama, N.4    Miyazaki, T.5
  • 34
    • 0033061058 scopus 로고    scopus 로고
    • The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae
    • Jack R, De Zamaroczy M, Merrick M: The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 1999;181:1156-1162.
    • (1999) J Bacteriol , vol.181 , pp. 1156-1162
    • Jack, R.1    De Zamaroczy, M.2    Merrick, M.3
  • 35
    • 0029874910 scopus 로고    scopus 로고
    • Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon
    • Jovanovic G, Weiner L, Model P: Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 1996;178:1936-1945.
    • (1996) J Bacteriol , vol.178 , pp. 1936-1945
    • Jovanovic, G.1    Weiner, L.2    Model, P.3
  • 37
    • 0014374541 scopus 로고
    • The occurrence of the Entner-Doudoroff pathway in bacteria
    • Kersters K, De Ley J: The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie Van Leeuwenhoek 1968;34:393-408.
    • (1968) Antonie Van Leeuwenhoek , vol.34 , pp. 393-408
    • Kersters, K.1    De Ley, J.2
  • 38
    • 0029019156 scopus 로고
    • Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans
    • Klasen R, Bringer-Meyer S, Sahm H: Biochemical characterization and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 1995;177:2637-2643.
    • (1995) J Bacteriol , vol.177 , pp. 2637-2643
    • Klasen, R.1    Bringer-Meyer, S.2    Sahm, H.3
  • 39
    • 77955594625 scopus 로고
    • Microbial dehydrogenations of monosaccharides
    • Kulhanek M: Microbial dehydrogenations of monosaccharides. Adv Appl Microbiol 1989; 34:141-181.
    • (1989) Adv Appl Microbiol , vol.34 , pp. 141-181
    • Kulhanek, M.1
  • 41
    • 0034756927 scopus 로고    scopus 로고
    • Biotechnological production of pyruvic acid
    • Li Y, Chen J, Lun SY: Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 2001;57:451-459.
    • (2001) Appl Microbiol Biotechnol , vol.57 , pp. 451-459
    • Li, Y.1    Chen, J.2    Lun, S.Y.3
  • 43
    • 0035070253 scopus 로고    scopus 로고
    • The genus Gluconobacter and its applications in biotechnology
    • Macauley S, McNeil B, Harvey LM: The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol 2001;21:1-25.
    • (2001) Crit Rev Biotechnol , vol.21 , pp. 1-25
    • Macauley, S.1    McNeil, B.2    Harvey, L.M.3
  • 44
    • 0011532542 scopus 로고
    • Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans
    • Matsushita K, Shinagawa E, Adachi O, Ameyama M: Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim Biophys Acta 1987;894:304-312.
    • (1987) Biochim Biophys Acta , vol.894 , pp. 304-312
    • Matsushita, K.1    Shinagawa, E.2    Adachi, O.3    Ameyama, M.4
  • 45
    • 85004631371 scopus 로고
    • Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans
    • Matsushita K, Nagatani Y, Shinagawa E, Adachi O, Ameyama M: Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric Biol Chem 1989;53:2895-2902.
    • (1989) Agric Biol Chem , vol.53 , pp. 2895-2902
    • Matsushita, K.1    Nagatani, Y.2    Shinagawa, E.3    Adachi, O.4    Ameyama, M.5
  • 46
    • 0028202832 scopus 로고
    • Respiratory chains and bioenergetics of acetic acid bacteria
    • Matsushita K, Toyoma H, Adachi O: Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 1994;36:247-301.
    • (1994) Adv Microb Physiol , vol.36 , pp. 247-301
    • Matsushita, K.1    Toyoma, H.2    Adachi, O.3
  • 47
    • 0037393281 scopus 로고    scopus 로고
    • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O: 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 2003;69:1959-1966.
    • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O: 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 2003;69:1959-1966.
  • 48
    • 55249086706 scopus 로고    scopus 로고
    • Matsushita K, Toyama H, Adachi O: Respiratory chains in acetic acid bacteria: membrane-bound periplasmic sugar and alcohol respirations; in Zannoni D (ed): Respiration in Archaea and Bacteria, 2: Diversity of Prokaryotic Respiratory Systems. Dordrecht, Springer, 2004, 2, pp 81-99.
    • Matsushita K, Toyama H, Adachi O: Respiratory chains in acetic acid bacteria: membrane-bound periplasmic sugar and alcohol respirations; in Zannoni D (ed): Respiration in Archaea and Bacteria, vol 2: Diversity of Prokaryotic Respiratory Systems. Dordrecht, Springer, 2004, vol 2, pp 81-99.
  • 49
    • 34347349545 scopus 로고    scopus 로고
    • Acetic acid production in acetic acid bacteria leading to their 'death' and survival
    • Yamada M ed, Kerala/India, Research Signpost
    • Matsushita K, Inoue G, Theeragool J, Trcek H, Toyama H, Adachi O: Acetic acid production in acetic acid bacteria leading to their 'death' and survival; in Yamada M (ed): Survival and Death in Bacteria. Kerala/India, Research Signpost, 2005, pp 169-181.
    • (2005) Survival and Death in Bacteria , pp. 169-181
    • Matsushita, K.1    Inoue, G.2    Theeragool, J.3    Trcek, H.4    Toyama, H.5    Adachi, O.6
  • 50
    • 0022383731 scopus 로고
    • The cytochrome d complex is a coupling site in the aerobic respiratory chain of Escherichia coli
    • Miller MJ, Gennis RB: The cytochrome d complex is a coupling site in the aerobic respiratory chain of Escherichia coli. J Biol Chem 1985;260:14003-14008.
    • (1985) J Biol Chem , vol.260 , pp. 14003-14008
    • Miller, M.J.1    Gennis, R.B.2
  • 51
    • 0035751610 scopus 로고    scopus 로고
    • Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9
    • Moonmangmee D, Fujii Y, Toyama H, Theeragool G, Lotong N, Matsushita K, Adachi O: Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci Biotechnol Biochem 2001;65:2763-2772.
    • (2001) Biosci Biotechnol Biochem , vol.65 , pp. 2763-2772
    • Moonmangmee, D.1    Fujii, Y.2    Toyama, H.3    Theeragool, G.4    Lotong, N.5    Matsushita, K.6    Adachi, O.7
  • 53
    • 0036481377 scopus 로고    scopus 로고
    • Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K: L-Erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 2002b;66:307-318.
    • Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K: L-Erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 2002b;66:307-318.
  • 54
    • 55249107331 scopus 로고
    • Glucose metabolism in, PhD Thesis, University of Groningen
    • Olijve W: Glucose metabolism in Gluconobacter oxydans; PhD Thesis, University of Groningen, 1978.
    • (1978) Gluconobacter oxydans
    • Olijve, W.1
  • 55
    • 0018423196 scopus 로고
    • Analysis of growth of Gluconobacter oxydans in glucose-containing media
    • Olijve W, Kok JJ: Analysis of growth of Gluconobacter oxydans in glucose-containing media. Arch Microbiol 1979;121:283-290.
    • (1979) Arch Microbiol , vol.121 , pp. 283-290
    • Olijve, W.1    Kok, J.J.2
  • 56
    • 17644416103 scopus 로고    scopus 로고
    • Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: Screening, medium optimisation and application for enzymatic polyol production
    • Parmentier S, Beauprez J, Arnaut F, Soetaert W, Vandamme EJ: Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production. Biotechnol Lett 2005;27:305-311.
    • (2005) Biotechnol Lett , vol.27 , pp. 305-311
    • Parmentier, S.1    Beauprez, J.2    Arnaut, F.3    Soetaert, W.4    Vandamme, E.J.5
  • 57
    • 0024637186 scopus 로고
    • Role of NADP-dependent and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans
    • Pronk JT, Levering PR, Olijve W, van Dijken JP: Role of NADP-dependent and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol 1989;11:160-164.
    • (1989) Enzyme Microb Technol , vol.11 , pp. 160-164
    • Pronk, J.T.1    Levering, P.R.2    Olijve, W.3    van Dijken, J.P.4
  • 59
    • 0026093011 scopus 로고
    • Cellulose biosynthesis and function in bacteria
    • Ross P, Mayer R, Benziman M: Cellulose biosynthesis and function in bacteria. Microbiol Rev 1991;55:5-58.
    • (1991) Microbiol Rev , vol.55 , pp. 5-58
    • Ross, P.1    Mayer, R.2    Benziman, M.3
  • 60
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613-6619.
    • (2004) J Biol Chem , vol.279 , pp. 6613-6619
    • Sauer, U.1    Canonaco, F.2    Heri, S.3    Perrenoud, A.4    Fischer, E.5
  • 61
    • 38449109203 scopus 로고    scopus 로고
    • Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H
    • Schweiger P, Volland S, Deppenmeier U: Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 2007;13:147-155.
    • (2007) J Mol Microbiol Biotechnol , vol.13 , pp. 147-155
    • Schweiger, P.1    Volland, S.2    Deppenmeier, U.3
  • 62
    • 0033917172 scopus 로고    scopus 로고
    • Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738
    • Shibata T, Ichikawa C, Matsuura M, Takata Y, Noguchi Y, Saito Y, Yamashita M: Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738. J Biosci Bioeng 2000;89:463-468.
    • (2000) J Biosci Bioeng , vol.89 , pp. 463-468
    • Shibata, T.1    Ichikawa, C.2    Matsuura, M.3    Takata, Y.4    Noguchi, Y.5    Saito, Y.6    Yamashita, M.7
  • 63
    • 84895797146 scopus 로고
    • Purification and characterization of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus
    • Shinagawa E, Matsushita K, Adachi O, Ameyama M: Purification and characterization of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus . Agric Biol Chem 1981;45:1079-1085.
    • (1981) Agric Biol Chem , vol.45 , pp. 1079-1085
    • Shinagawa, E.1    Matsushita, K.2    Adachi, O.3    Ameyama, M.4
  • 64
    • 0000496812 scopus 로고
    • Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α
    • Shinagawa E, Matsushita K, Adachi O, Ameyama M: Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric Biol Chem 1982;46:135-141.
    • (1982) Agric Biol Chem , vol.46 , pp. 135-141
    • Shinagawa, E.1    Matsushita, K.2    Adachi, O.3    Ameyama, M.4
  • 65
    • 0036178124 scopus 로고    scopus 로고
    • NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291
    • Shinjoh M, Tazoe M, Hoshino T: NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. J Bacteriol 2002;184:861-863.
    • (2002) J Bacteriol , vol.184 , pp. 861-863
    • Shinjoh, M.1    Tazoe, M.2    Hoshino, T.3
  • 66
    • 55249122642 scopus 로고    scopus 로고
    • Sievers M, Swings J: Family II. Acetobacteraceae; in Garrity G, Brenner DJ, Krieg NR, Staley JT (eds): Bergey's Manual of Systematic Bacteriology. New York, Springer, 2005, 2c, pp 41-95.
    • Sievers M, Swings J: Family II. Acetobacteraceae; in Garrity G, Brenner DJ, Krieg NR, Staley JT (eds): Bergey's Manual of Systematic Bacteriology. New York, Springer, 2005, vol 2c, pp 41-95.
  • 67
    • 0042423529 scopus 로고    scopus 로고
    • Cloning of the xylitol dehydrogenase from Gluconobacter oxydans and improved production of xylitol from arabitol
    • Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K: Cloning of the xylitol dehydrogenase from Gluconobacter oxydans and improved production of xylitol from arabitol. Biosci Biotechnol Biochem 2003;67:584-591.
    • (2003) Biosci Biotechnol Biochem , vol.67 , pp. 584-591
    • Sugiyama, M.1    Suzuki, S.2    Tonouchi, N.3    Yokozeki, K.4
  • 68
    • 33845316063 scopus 로고    scopus 로고
    • Gluconobacter in biosensors: Applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction
    • Svitel J, Tkac J, Vostiar I, Navratil M, Stefuca V, Bucko M, Gemeiner P: Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnol Lett 2006;28:2003-2010.
    • (2006) Biotechnol Lett , vol.28 , pp. 2003-2010
    • Svitel, J.1    Tkac, J.2    Vostiar, I.3    Navratil, M.4    Stefuca, V.5    Bucko, M.6    Gemeiner, P.7
  • 69
    • 0025955357 scopus 로고
    • Topological analysis of the pyridine nucleotide transhydrogenase of Escherichia coli using proteolytic enzymes
    • Tong RC, Glavas NA, Bragg PD: Topological analysis of the pyridine nucleotide transhydrogenase of Escherichia coli using proteolytic enzymes. Biochim Biophys Acta 1991;1080:19-28.
    • (1991) Biochim Biophys Acta , vol.1080 , pp. 19-28
    • Tong, R.C.1    Glavas, N.A.2    Bragg, P.D.3
  • 70
    • 22444441792 scopus 로고    scopus 로고
    • Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand
    • Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K: Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 2005; 69:1120-1129.
    • (2005) Biosci Biotechnol Biochem , vol.69 , pp. 1120-1129
    • Toyama, H.1    Soemphol, W.2    Moonmangmee, D.3    Adachi, O.4    Matsushita, K.5
  • 71
    • 10444240290 scopus 로고    scopus 로고
    • Quinate oxidation in Gluconobacter oxydans IFO3244: Purification and characterization of quinoprotein quinate dehydrogenase
    • Vangnai AS, Toyama H, De-Eknamkul W, Yoshihara N, Adachi O, Matsushita K: Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol Lett 2004;241:157-162.
    • (2004) FEMS Microbiol Lett , vol.241 , pp. 157-162
    • Vangnai, A.S.1    Toyama, H.2    De-Eknamkul, W.3    Yoshihara, N.4    Adachi, O.5    Matsushita, K.6
  • 74
    • 0028103897 scopus 로고
    • Cloning and sequencing of the genes for the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum and the implications for the domain structure of the enzyme
    • Williams R, Cotton NP, Thomas CM, Jackson JB: Cloning and sequencing of the genes for the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum and the implications for the domain structure of the enzyme. Microbiology 1994;140:1595-1604.
    • (1994) Microbiology , vol.140 , pp. 1595-1604
    • Williams, R.1    Cotton, N.P.2    Thomas, C.M.3    Jackson, J.B.4
  • 75
    • 0031202058 scopus 로고    scopus 로고
    • The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconacetobacter to the generic level
    • Yamada Y, Hoshino K, Ishikawa T: The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the generic level. Biosci Biotechnol Biochem 1997;61:1244-1251.
    • (1997) Biosci Biotechnol Biochem , vol.61 , pp. 1244-1251
    • Yamada, Y.1    Hoshino, K.2    Ishikawa, T.3
  • 76
    • 0032905579 scopus 로고    scopus 로고
    • Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter
    • Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, Komagata K: Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter . J Gen Appl Microbiol 1999;45:23-28.
    • (1999) J Gen Appl Microbiol , vol.45 , pp. 23-28
    • Yamada, Y.1    Hosono, R.2    Lisdyanti, P.3    Widyastuti, Y.4    Saono, S.5    Uchimura, T.6    Komagata, K.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.