메뉴 건너뛰기




Volumn 60, Issue 4, 2013, Pages 1111-1117

Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM

Author keywords

Low density separation (LDS); microarray data; semisupervised classification; support vector machines (SVM); transductive learning

Indexed keywords

GENE EXPRESSION PROFILING; GREEDY SEARCH ALGORITHMS; LOW DENSITY; MICROARRAY DATA; MICROARRAY TECHNOLOGIES; SEMI-SUPERVISED CLASSIFICATION; TRANSDUCTIVE LEARNING; TRANSDUCTIVE SUPPORT VECTOR MACHINE;

EID: 84875516745     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2012.2225622     Document Type: Article
Times cited : (50)

References (37)
  • 1
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • DOI 10.1093/bioinformatics/btm418
    • S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik, "An improved algorithm for clustering gene expression data," Bioinformatics, vol. 23, no. 21, pp. 2859-2865, 2007. (Pubitemid 350162891)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 2
    • 85008025286 scopus 로고    scopus 로고
    • Gene identification: Classical and computational intelligence approaches
    • Jan
    • S. Bandyopadhyay, U. Maulik, and D. Roy, "Gene identification: Classical and computational intelligence approaches," IEEE Trans. Syst., Man, Cybern. C, vol. 38, no. 1, pp. 55-68, Jan. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. C , vol.38 , Issue.1 , pp. 55-68
    • Bandyopadhyay, S.1    Maulik, U.2    Roy, D.3
  • 3
    • 77953358008 scopus 로고    scopus 로고
    • Development of the human cancer microRNA network
    • S. Bandyopadhyay, R. Mitra, and U.Maulik, "Development of the human cancer microRNA network," BMC Silence, vol. 1, no. 6, 2010.
    • BMC Silence , vol.1 , Issue.6 , pp. 2010
    • Bandyopadhyay, S.1    Mitra, R.2    Maulik, U.3
  • 6
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. Blum and P. Langley, "Selection of relevant features and examples in machine learing," Artif. Intell., vol. 97, no. 1/2, pp. 245-271, 1997. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Knowl. Discov. Data Mining, vol. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 8
    • 84891494532 scopus 로고    scopus 로고
    • [Online]. Available: http://www.biolab.si/supp/bi-cancer/projections/ index.htm
  • 11
    • 0038731227 scopus 로고    scopus 로고
    • Learning with progressive transductive support vector machine
    • DOI 10.1016/S0167-8655(03)00008-4
    • Y. Chen, G. Wang, and S. Dong, "Learning with progressive transductive support vectormachine," Pattern Recognit. Lett., vol. 34, no. 12, pp. 1845-1855, 2003. (Pubitemid 36562560)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1845-1855
    • Chen, Y.1    Wang, G.2    Dong, S.3
  • 12
    • 0242302657 scopus 로고    scopus 로고
    • Consistency based search in feature selection
    • M. Dash andH. Liu, "Consistency based search in feature selection," Artif. Intell., vol. 151, pp. 155-176, 2003.
    • (2003) Artif. Intell , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 13
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of public microarray studies in cancer outcome and guidelines on statistical analysis and reporting
    • A. Dupuy and R. M. Simon, "Critical review of public microarray studies in cancer outcome and guidelines on statistical analysis and reporting," J. Nat. Cancer 1nst., vol. 99, pp. 147-157, 2007.
    • (2007) J. Nat. Cancer 1nst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 14
    • 41849115550 scopus 로고    scopus 로고
    • A Semi-supervised method for predicting transcription factor-gene interactions in escherichia coli
    • J. Ernst, Q. K. Beg, K. A. Kay, G. Bazsi, Z. N. Oltvai, and Z. Bar-Joseph, "A Semi-supervised method for predicting transcription factor-gene interactions in escherichia coli," Plos Comput. Biol., vol. 4, p. e1000044, 2008.
    • (2008) Plos Comput. Biol , vol.4
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3    Bazsi, G.4    Oltvai, Z.N.5    Bar-Joseph, Z.6
  • 15
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • L. Ein-Dor, O. Zuk, and E. Domany, "Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer," Proc. Nat. Acad. Sci. USA, vol. 103, pp. 5923-5928, 2006.
    • (2006) Proc. Nat. Acad. Sci. USA , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 16
    • 78650444882 scopus 로고    scopus 로고
    • Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia
    • A. J. Gentles, S. K. Plevritis, R. Majeti, and A. A. Alizadeh, "Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia," J. Amer. Med. Assoc., vol. 304, pp. 2706-2715, 2010.
    • (2010) J. Amer. Med. Assoc. , vol.304 , pp. 2706-2715
    • Gentles, A.J.1    Plevritis, S.K.2    Majeti, R.3    Alizadeh, A.A.4
  • 19
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Q. H. Hu,D. R.Yu, and Z. X.Xie, "Information-preserving hybrid data reduction based on fuzzy-rough techniques," Pattern Recognit. Lett., vol. 27, pp. 414-423, 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 20
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • DOI 10.1109/TKDE.2004.96
    • R. Jensen and Q. Shen, "Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches," IEEE Trans. Knowl. Data Eng., vol. 16, no. 12, pp. 1457-1471, Dec. 2004. (Pubitemid 40010921)
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 21
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. Int Conf. Mach. Learning, 1999, pp. 200-209.
    • (1999) Proc. Int Conf. Mach. Learning , pp. 200-209
    • Joachims, T.1
  • 22
    • 34547696887 scopus 로고    scopus 로고
    • On the effectiveness of Laplacian normalization for graph semi-supervised learning
    • R. Johnson and T. Zhang, "On the effective Laplacian normalization for graph semi-supervised learning," J. Mach. Learning Res., vol. 8, pp. 1489-1517, 2007. (Pubitemid 47210274)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1489-1517
    • Johnson, R.1    Zhang, T.2
  • 23
    • 80054951091 scopus 로고    scopus 로고
    • Gene expression signatures to predict the response of gastric cancer to cisplatin and fluorouracil
    • H.K. Kim, I. J. Choi, C. G. Kim, A. Oshima, and J. E. Green, "Gene expression signatures to predict the response of gastric cancer to cisplatin and fluorouracil," J. Clin. Oncol., vol. 27, no. 15S, 2009.
    • (2009) J. Clin. Oncol , vol.27 , Issue.15 S
    • Kim, H.K.1    Choi, I.J.2    Kim, C.G.3    Oshima, A.4    Green, J.E.5
  • 26
    • 62949240361 scopus 로고    scopus 로고
    • Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes
    • U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay, "Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes," BMC Bioinformat., vol. 10, no. 27, 2009.
    • (2009) BMC Bioinformat , vol.10 , Issue.27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 27
    • 79956070450 scopus 로고    scopus 로고
    • Analysis of gene microarray data in soft computing framework
    • U. Maulik, "Analysis of gene microarray data in soft computing framework," Appl. Soft Comput., vol. 11, no. 6, pp. 4152-4160, 2011.
    • (2011) Appl. Soft Comput , vol.11 , Issue.6 , pp. 4152-4160
    • Maulik, U.1
  • 28
    • 78649720287 scopus 로고    scopus 로고
    • Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for genemarker identification
    • A. Mukhopadhyay, S. Bandyopadhyay, and U.Maulik, "Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for genemarker identification," PLoS ONE, vol. 5, no. 11, pp. 1-14, 2010.
    • (2010) PLoS ONE , vol.5 , Issue.11 , pp. 1-14
    • Mukhopadhyay, A.1    Bandyopadhyay, S.2    Maulik, U.3
  • 30
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzingmicroarray data
    • U. Maulik and A. Mukhopadhyay, "Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzingmicroarray data," Comput. Oper. Res., vol. 37, no. 8, pp. 1369-1380, 2010.
    • (2010) Comput. Oper. Res , vol.37 , Issue.8 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 31
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y. Qian, J. Liang, W. Pedrycz, and C. Dang, "Positive approximation: An accelerator for attribute reduction in rough set theory," Artif. Intell., vol. 174, pp. 597-618, 2010.
    • (2010) Artif. Intell , vol.174 , pp. 597-618
    • Qian, Y.1    Liang, J.2    Pedrycz, W.3    Dang, C.4
  • 32
    • 49549087973 scopus 로고    scopus 로고
    • Clinically driven semi-supervised class discovery in gene expression data
    • I. Steinfeld, R. Navon, D. Ardig̀o, I. Zavaroni, and Z. Yakhini, "Clinically driven semi-supervised class discovery in gene expression data," Bioinformatics, vol. 24, pp. 190-197, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 190-197
    • Steinfeld, I.1    Navon, R.2    Ardig̀o, D.3    Zavaroni, I.4    Yakhini, Z.5
  • 34
    • 33749253228 scopus 로고
    • On structural risk minimization or overall risk in a problem of pattern recognition
    • V. Vapnik and A. Sterin, "On structural risk minimization or overall risk in a problem of pattern recognition," Autom. Remote Contr., vol. 10, no. 3, pp. 1495-1503, 1977.
    • (1977) Autom. Remote Contr , vol.10 , Issue.3 , pp. 1495-1503
    • Vapnik, V.1    Sterin, A.2
  • 35
    • 35548968410 scopus 로고    scopus 로고
    • Large margin semi-supervised learning
    • J. H. Wang and X. T. Shen, "Large margin semi-supervised learning," J. Mach.Learning Res., vol. 8, pp. 1867-1891, 2007.
    • (2007) J. Mach.Learning Res. , vol.8 , pp. 1867-1891
    • Wang, J.H.1    Shen, X.T.2
  • 36
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • DOI 10.1093/bioinformatics/bti497
    • J.Weston, C. Leslie, E. Le, D. Zhou, A. Elisseeff, andW. S. Noble, "Semisupervised protein classification using cluster kernels," Bioinformatics, vol. 21, pp. 3241-3247, 2008. (Pubitemid 41418437)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Le, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.