메뉴 건너뛰기




Volumn 8, Issue , 2007, Pages 1867-1891

Large margin semi-supervised learning

Author keywords

Generalization; Grouping; Sequential quadratic programming; Support vectors

Indexed keywords

DATA ACQUISITION; DIFFERENCE EQUATIONS; ERROR ANALYSIS; ESTIMATION; QUADRATIC PROGRAMMING; TUNING;

EID: 35548968410     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (51)

References (40)
  • 1
  • 2
    • 57849155344 scopus 로고    scopus 로고
    • Semi-supervised learning with an explicit label-error model for misclassified data
    • M. Amini, and P. Gallinari. Semi-supervised learning with an explicit label-error model for misclassified data. In IJCAl 2003.
    • (2003) IJCAl
    • Amini, M.1    Gallinari, P.2
  • 3
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms
    • L. An and P. Tao. Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. of Global Optimization, 11:253-285, 1997.
    • (1997) J. of Global Optimization , vol.11 , pp. 253-285
    • An, L.1    Tao, P.2
  • 4
    • 21844438399 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Technical Report RC23462, IBM T.J. Watson Research Center
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Technical Report RC23462, IBM T.J. Watson Research Center, 2004.
    • (2004)
    • Ando, R.1    Zhang, T.2
  • 7
    • 31844446899 scopus 로고    scopus 로고
    • Manifold Regularization: A Geometric Framework for Learning From Examples
    • Technical Report, Univ. of Chicago, Department of Computer Science, TR-2004-06
    • M. Belkin, P. Niyogi and V. Sindhwani. Manifold Regularization: A Geometric Framework for Learning From Examples. Technical Report, Univ. of Chicago, Department of Computer Science, TR-2004-06, 2004.
    • (2004)
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Department of Information and Computer Science
    • C. L. Blake and C. J. Merz. UCI repository of machine learning databases [http://www.ics.ci.edu/~mlearn/MLRepository.html]. University of California, Irvine, Department of Information and Computer Science, 1998.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 35548937746 scopus 로고    scopus 로고
    • Semi-supervised learning of mixture models and Bayesian networks
    • F. G. Cozman, I. Cohen and M. C. Cirelo. Semi-supervised learning of mixture models and Bayesian networks. In ICML 2003.
    • (2003) ICML
    • Cozman, F.G.1    Cohen, I.2    Cirelo, M.C.3
  • 13
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • B. Efron. The estimation of prediction error: Covariance penalties and cross-validation. J. Amer. Statist. Assoc., 99:619-632, 2004.
    • (2004) J. Amer. Statist. Assoc , vol.99 , pp. 619-632
    • Efron, B.1
  • 16
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML 1999.
    • (1999) ICML
    • Joachims, T.1
  • 17
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery, 6:259-275, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 18
    • 24344444131 scopus 로고    scopus 로고
    • Statistical properties of the method of regularization with periodic Gaussian reproducing kernel
    • Y. Lin and L. D. Brown. Statistical properties of the method of regularization with periodic Gaussian reproducing kernel. Ann. Statist., 32:1723-1743, 2004.
    • (2004) Ann. Statist , vol.32 , pp. 1723-1743
    • Lin, Y.1    Brown, L.D.2
  • 20
    • 33745638149 scopus 로고    scopus 로고
    • Multicategory ψ-learning
    • Y. Liu and X. Shen. Multicategory ψ-learning. J. Amer. Statist. Assoc., 101:500-509, 2006.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 500-509
    • Liu, Y.1    Shen, X.2
  • 22
    • 0006009575 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun and T. Mitchell. Text classification from labeled and unlabeled documents using EM. In AAAI 1998.
    • (1998) AAAI
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 24
    • 21844489169 scopus 로고
    • Convergence rate of sieve estimates
    • X. Shen and W. Wong. Convergence rate of sieve estimates. Ann. Statist., 22:580-615, 1994.
    • (1994) Ann. Statist , vol.22 , pp. 580-615
    • Shen, X.1    Wong, W.2
  • 25
    • 0032376009 scopus 로고    scopus 로고
    • On the method of penalization
    • X. Shen. On the method of penalization. Statist. Silica, 8:337-357, 1998.
    • (1998) Statist. Silica , vol.8 , pp. 337-357
    • Shen, X.1
  • 26
    • 33745635949 scopus 로고    scopus 로고
    • Optimal model assessment, selection and combination
    • X. Shen and H. C. Huang. Optimal model assessment, selection and combination. J. Amen Statist. Assoc., 101:554-568, 2006.
    • (2006) J. Amen Statist. Assoc , vol.101 , pp. 554-568
    • Shen, X.1    Huang, H.C.2
  • 28
    • 35548954550 scopus 로고    scopus 로고
    • X. Shen and L. Wang. Discussion of 2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist., in press.
    • X. Shen and L. Wang. Discussion of 2004 IMS Medallion Lecture: "Local Rademacher complexities and oracle inequalities in risk minimization". Ann. Statist., in press.
  • 29
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. J. Machine Learning Research, 2:67-93, 2001.
    • (2001) J. Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 30
    • 84898939676 scopus 로고    scopus 로고
    • Information regularization with partially labeled data
    • M. Szummer and T. Jaakkola. Information regularization with partially labeled data. In NIPS 2003.
    • (2003) NIPS
    • Szummer, M.1    Jaakkola, T.2
  • 31
    • 21144465429 scopus 로고
    • Hellinger-consistency of certain nonparametric maximum likelihood estimators
    • S. Van De Geer. Hellinger-consistency of certain nonparametric maximum likelihood estimators. Ann. Statist., 21:14-44, 1993.
    • (1993) Ann. Statist , vol.21 , pp. 14-44
    • Van De Geer, S.1
  • 33
    • 0003241883 scopus 로고
    • Spline models for observational data
    • SIAM, Philadelphia
    • G. Wahba. Spline models for observational data. Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 34
    • 33746128910 scopus 로고    scopus 로고
    • Estimation of generalization error: Random and fixed inputs
    • J. Wang and X. Shen. Estimation of generalization error: random and fixed inputs. Statist. Sinica, 16:569-588, 2006.
    • (2006) Statist. Sinica , vol.16 , pp. 569-588
    • Wang, J.1    Shen, X.2
  • 36
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • T. Zhang and F. Oies. A probability analysis on the value of unlabeled data for classification problems. In ICML 2000.
    • (2000) ICML
    • Zhang, T.1    Oies, F.2
  • 37
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D. Zhou. The covering number in learning theory. J. of Complexity, 18:739-767, 2002.
    • (2002) J. of Complexity , vol.18 , pp. 739-767
    • Zhou, D.1
  • 38
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. J. Comp. Graph. Statist., 14:185-205, 2005.
    • (2005) J. Comp. Graph. Statist , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 39
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 40
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In ICML 2005.
    • (2005) ICML
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.